Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of important neurotransmitter regulator determined

04.02.2008
Researchers from Virginia Tech and the Brookhaven National Laboratory have solved the structure of an enzyme that is critical in the regulation of the neurotransmitter system in the human brain.

The enzyme is human kynurenine aminotransferase II (KAT II), which regulates the activity of the neurotransmitter system that is activated by glutamate, the most common neurotransmitter in the brain.

Qian Han, a research scientists in biochemistry at Virginia Tech; Howard Robinson, a biologist at Brookhaven; and Jianyong Li, associate professor of biochemistry at Virginia Tech, report their findings in the article, “Crystal structure of human kynurenine aminotransferase II,” in the Feb. 8 issue of the Journal of Biological Chemistry (www.jbc.org/).

Li, who is corresponding author, explained that learning and memory depend upon glutamate; however, over stimulation will lead to neuron death and is one cause of such neurodegenerative diseases Parkinson’s and Alzheimer’s.

... more about:
»KAT »Neurotransmitter »glutamate »structure

“The product of KAT II is kynurenic acid (KA) that is a noncompeting binder of the glutamate receptors. Its binding to the glutamate receptors reduces stimulation. So it (KA) has a regulatory effect,” Li said. “It is considered protective – although too much is also a problem,” he said.

Before scientists can target KAT II as a treatment, they have to know how it works. Part of the challenge was solved when the DNA sequence of KAT II was determined, but knowing the code is not enough. How proteins pass their critical messages also depends upon their shape. Imagine proteins as curls of ribbons with each unique fold as important to the messages they convey as the sequences of letters in their genetic code.

Han, Robinson, and Li succeeded in determining both the unbound protein and its complex three-dimensional structures of KAT II. The structure in complex with kynurenine reveals the almost ephemeral linkages of the KAT II enzyme with its substrate.

“Now we know what it looks like, we can determine how it works and do research into how to manipulate the protein,” Li said. “We have provided a molecular basis for biochemical regulation of this critical regulator.”

The article reports on Han’s research to crystallize KAT II in combination with a substrate. Robinson used a synchrotron to create X-ray diffraction patterns to reveal atomic and molecular associations within the crystal, which allowed Han and Li to do phase determination and an iterative process of model building and refinement and eventually describe the structure.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

Further reports about: KAT Neurotransmitter glutamate structure

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>