Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of important neurotransmitter regulator determined

04.02.2008
Researchers from Virginia Tech and the Brookhaven National Laboratory have solved the structure of an enzyme that is critical in the regulation of the neurotransmitter system in the human brain.

The enzyme is human kynurenine aminotransferase II (KAT II), which regulates the activity of the neurotransmitter system that is activated by glutamate, the most common neurotransmitter in the brain.

Qian Han, a research scientists in biochemistry at Virginia Tech; Howard Robinson, a biologist at Brookhaven; and Jianyong Li, associate professor of biochemistry at Virginia Tech, report their findings in the article, “Crystal structure of human kynurenine aminotransferase II,” in the Feb. 8 issue of the Journal of Biological Chemistry (www.jbc.org/).

Li, who is corresponding author, explained that learning and memory depend upon glutamate; however, over stimulation will lead to neuron death and is one cause of such neurodegenerative diseases Parkinson’s and Alzheimer’s.

... more about:
»KAT »Neurotransmitter »glutamate »structure

“The product of KAT II is kynurenic acid (KA) that is a noncompeting binder of the glutamate receptors. Its binding to the glutamate receptors reduces stimulation. So it (KA) has a regulatory effect,” Li said. “It is considered protective – although too much is also a problem,” he said.

Before scientists can target KAT II as a treatment, they have to know how it works. Part of the challenge was solved when the DNA sequence of KAT II was determined, but knowing the code is not enough. How proteins pass their critical messages also depends upon their shape. Imagine proteins as curls of ribbons with each unique fold as important to the messages they convey as the sequences of letters in their genetic code.

Han, Robinson, and Li succeeded in determining both the unbound protein and its complex three-dimensional structures of KAT II. The structure in complex with kynurenine reveals the almost ephemeral linkages of the KAT II enzyme with its substrate.

“Now we know what it looks like, we can determine how it works and do research into how to manipulate the protein,” Li said. “We have provided a molecular basis for biochemical regulation of this critical regulator.”

The article reports on Han’s research to crystallize KAT II in combination with a substrate. Robinson used a synchrotron to create X-ray diffraction patterns to reveal atomic and molecular associations within the crystal, which allowed Han and Li to do phase determination and an iterative process of model building and refinement and eventually describe the structure.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

Further reports about: KAT Neurotransmitter glutamate structure

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>