Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover more about how poxviruses evade the immune system

04.02.2008
Findings by SLU, UAB teams could lead to new drugs targeting inflammatory and immune disorders

Scientists at Saint Louis University and the University of Alabama at Birmingham have uncovered important new information about a key protein that allows viruses such as smallpox to replicate and wreak havoc on the immune system.

The findings further our understanding of how the pox family of viruses work to subvert the immune system, the researchers say. They also believe their work could one day be used to develop new drugs to combat a variety of inflammatory and immunological disorders, including rheumatoid arthritis and some forms of heart disease.

The research is soon to be published in an early online edition of the Proceedings of the National Academy of Sciences(www.pnas.org).

The paper describes the structure and actions of a powerful substance called interferon-gamma binding protein, which is notorious for the role it plays in helping the poxviruses to replicate. The research explores the interferon-gamma binding protein found in the mousepox virus – one of the family of viruses that also includes smallpox, monkeypox and cowpox.

“Cracking open and describing the structure and actions of interferon-gamma binding protein is incredibly exciting, given the important role this substance plays in subverting the immune system,” said Mark Buller, Ph.D., professor of microbiology and immunology at the Saint Louis University School of Medicine and one of the study’s authors. “This breakthrough is something that many others have tried and failed to achieve.”

Normally when a virus enters the bloodstream, the immune system responds by producing a substance called interferon-gamma, which assists the development of the immune response that’s responsible for ridding the body of the virus.

Poxviruses, however, all come encoded with a potent weapon to evade the immune system: interferon-gamma binding protein. As its name implies, the protein literally binds to interferon-gamma and immobilizes it, preventing it from marshalling the immune system’s defenses. The poxvirus is then able to replicate and cause immense damage.

The research describes how interferon-gamma binding protein looks and behaves on the molecular level during this process, something not previously understood.

“The poxviruses are able to evade the immune system very skillfully,” Buller said, “so we wanted to identify exactly how these viruses work – what makes them so effective and efficient.”

Buller added that the findings have great potential for use in developing drugs that target immunological and inflammatory disorders, including a type of heart disease called atherosclerosis (sometimes referred to as hardening of the arteries), inflammatory bowel diseases (such as Crohn’s disease and ulcerative colitis) and rheumatoid arthritis.

Of all the poxviruses, smallpox in particular has played a gruesome role in human history. The virus is estimated to have caused between 300 million and 500 million deaths in the 20th century alone. Though smallpox was declared officially eradicated in 1979, many experts fear that clandestine samples of the virus may have survived – thus making it a major bioterrorism concern.

“The damage that the smallpox virus has done to mankind is horrific and enormous, which is why we think it’s so important to understand more about the poxviruses and how they operate,” Buller said. “The more knowledge we have, the better we should be able to cope with other major viruses and diseases in the future.”

Buller pointed to co-author Tony Nuara as being critical to the team’s success in understanding more about interferon-gamma binding protein. Nuara, now a fourth-year student at Saint Louis University School of Medicine, was working on his Ph.D. in molecular microbiology when taking part in the research effort.

“Without Tony, this research wouldn’t have happened,” Buller said. “He solved huge numbers of problems and figured out some answers to puzzling questions that previously had no answer.”

(For more information on Nuara and his contribution to the research effort, go to www.slu.edu/x20435.xml).

Mark R. Walter, Ph.D., associate professor of microbiology at the University of Alabama at Birmingham and the paper’s senior author, also noted the efforts of co-authors Sung Il Yoon, Ph.D., Brandi C. Jones, Naomi J. Logsdon and Leigh J. Walter, all of whose work contributed to determining the three-dimensional structure of the binding protein.

“The structure provides a visual blueprint to guide our future studies on interferon-gamma binding protein, which one day may be used to prevent inflammatory disease,” Mark Walter said. “This is clearly a notable achievement.”

Donn Walker | EurekAlert!
Further information:
http://www.slu.edu
http://www.slu.edu/x20435.xml

Further reports about: Buller evade immune immune system inflammatory interferon-gamma poxvirus

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>