Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TU Delft launches bionanoscience initiative

04.02.2008
A new Bionanoscience department will be created at TU Delft. Bionanoscience concerns research at the meeting point of biology and nanotechnology meet and is as yet largely unexplored.

It is expected to become one of the key scientific fields of the 21st century. Over the next decade, TU Delft is set to invest 10 million Euro derived from strategic assets in the new Bionanoscience department, which will form part of the university’s successful Kavli Institute of Nanoscience. Last week, the Kavli Foundation also agreed to help support the initiative financially by donating 5 million US$.

Bionanoscience is the discipline where biology and nanoscience meet. The molecular building blocks of living cells are the focus of bionanoscience. The nanotechnology toolkit enables the precise depiction, study and control of biological molecules. This creates new insights into the fundamental workings of living cells. Furthermore, it is increasingly possible to use the elements of the cell, to the extent that – in a new field called synthetic biology – gene regulation systems, artificial biomolecules and nanoparticles can be developed and applied within the cells. The incorporation of new biological building blocks in cells is highly promising for applications in, for instance, industrial biotechnology and medical science. The Faculty of Applied Sciences’ new Bionanoscience department will explore the full spectrum from nanoscience to cell biology to synthetic biology, and as such will naturally and strategically complement the activities of the existing Nanoscience and Biotechnology departments.

Investment in biologically oriented fundamental research and its potential applications is of great strategic importance to TU Delft. This research field is new and has a bright future, and the research into individual cells is at the cutting edge of science and technology. Cell biology is becoming increasingly an engineering discipline: the traditional approach of the biologist is rapidly changing into that of the engineer. This is the motivation behind TU Delft’s strategic decision to add bionanoscience to its research portfolio and by doing so enhance its international position and profile.

... more about:
»Biology »Cell »bionanoscience

In addition to TU Delft’s EUR 10m contribution, last week the Kavli Foundation also decided that it is willing to donate USD 5m to the bionanoscience initiative.

The new department will work closely with the Nanoscience and Biotechnology departments and will ultimately be the same size as the existing departments in the Faculty of Applied Sciences. To this end, the next few years will see an intensive recruitment drive to attract about 15 top scientists to the department.

Initial steps have already been taken towards creating structural European cooperation: the prestigious European Molecular Biology Laboratory (EMBL) in Heidelberg has indicated its willingness to work together with TU Delft bionanoscientists. EMBL is a major potential partner, in particular in view of the EMBL’s expertise in the field of molecular cell biology. Further discussions on cooperation will be held with representatives from EMBL during a Kavli-EMBL workshop in Delft on 12 and 13 February.

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl

Further reports about: Biology Cell bionanoscience

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>