Conspicuous social signaling drives the evolution of chameleon color change

What drove the evolution of color change in chameleons? Chameleons can use color change to camouflage and to signal to other chameleons, but a new paper published in the open-access journal PLoS Biology shows that the need to rapidly signal to other chameleons, and not the need to camouflage from predators, has driven the evolution of this characteristic trait.

The research, conducted by Devi Stuart-Fox and Adnan Moussalli, shows that the dramatic color changes of chameleons are tailored to aggressively display to conspecific competitors and to seduce potential mates. Because these signals are quick—chameleons can change color in a matter of milliseconds—the animal can afford to make it obvious, as the risk that a predator will notice is limited. This finding means that the evolution of color change serves to make chameleons more noticeable, the complete opposite of the camouflage hypothesis. The amount of color change possible varies between species, and the authors cleverly capitalise on this in their experiments.

Stuart-Fox and Moussalli measured color change by setting up chameleon “duels”: sitting two males on a branch opposite each other and measuring the color variation. By comparing species that can change color dramatically to those that only change slightly, and considering the evolutionary interrelationships of the species, the researchers showed that dramatic color change is consistently associated with the use of color change as a social signal to other chameleons. The degree of change is not predicted by the amount of color variation in the chameleons’ habitat, as would be expected if chameleons had evolved such remarkable color changing abilities in order to camouflage.

Citation: Stuart-Fox D, Moussalli A (2008) Selection for social signalling drives the evolution of chameleon colour change. PLoS Biol 6(1): e25. doi:10.1371/journal.pbio.

0060025

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors