Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecologists, material scientists pursue genetics of diatom's elegant, etched casing

25.01.2008
Diatoms – some of which are so tiny that 30 can fit across the width of a human hair – are so numerous that they are among the key organisms taking the greenhouse gas carbon dioxide out of the Earth’s atmosphere.

The shells of diatoms are so heavy that when they die in the oceans they typically sink to watery graves on the seafloor, taking carbon out of the surface waters and locking it into sediments below.

This week in the online edition of the Proceedings of the National Academy of Sciences scientists report the discovery of whole subsets of genes and proteins that govern how one species of diatom builds its shell. For oceanographers, the work might one day help them understand how thousands of different kinds of diatoms – and their ability to remove carbon dioxide from the atmosphere – might be affected by something like global climate change.

Material scientists involved in the work are interested in the possibilities of manipulating the genes responsible for silica production as a way of fabricating more efficient computer chips.

Diatoms, most of which are far too tiny to see without magnification, are incredibly important in the global carbon cycle, says Thomas Mock, a University of Washington postdoctoral researcher in oceanography and lead author of the paper. During photosynthesis, diatoms turn carbon dioxide into organic carbon and, in the process, generate oxygen. They are responsible for 40 percent of the organic carbon produced in the world’s oceans each year.

The new work took advantage of the genomic map of the diatom Thalassiosira pseudonana published in 2004 by a team led by UW oceanography professor Virginia Armbrust, who is corresponding author of this week’s PNAS paper. Thalassiosira pseudonana is encased in a hatbox-shaped shell comprised of a rigid cell wall, made mainly of silica and delicately marked with pores in patterns distinctive enough for scientists to tell it from other diatoms.

Armed with the genomic map, the researchers changed environmental conditions in laboratory cultures of Thalassiosira pseudonana, for example limiting the amount of silicon and changing the temperatures. Then researchers used what’s called “whole genome expression profiling” to determine which parts of the genome were triggered to compensate.

Think of a plant on a windowsill that starts getting a lot more sunlight, Mock says. The new set of conditions will cause genes in the plant to turn on and off to help the plant acclimate to the increased light as best it can.

Scientists since the late 1990s have found only a handful of genes that influence diatom shell formation. The work with Thalassiosira pseudonana identified large, previously unknown subsets. A set of 75 genes, for example, was triggered to compensate when silicon was limited.

The researchers were surprised to find another subset of 84 genes triggered when either silicon or iron were limited, suggesting that these two pathways were somehow linked. Under low-iron conditions, the diatoms grew more slowly and genes involved in the production of the silica shell were triggered. Individual diatoms also tended to clump together under those conditions, making them even heavier and more likely to sink.

The response of thin and thick cell walls depending on the amount of iron available had been observed at sea but “no one had a clue about the molecular basis,” Mock says.

Considering that 30 percent of the world’s oceans are iron-poor, some scientists have suggested fertilizing such areas with iron so diatoms become more numerous and absorb more carbon dioxide from the atmosphere, thus putting the brakes on global warming. If, however, adding iron causes diatoms to change the thickness of their shells then perhaps they won’t be as likely to sink and instead would remain in the upper ocean where the carbon they contain might be released back to the atmosphere as they decay or are eaten.

“Iron increases primary production by diatoms but our study adds another concern about the efficiency of iron fertilization,” Mock says.

Along with helping scientists understand implications for climate change and absorption of carbon dioxide, diatoms can manipulate silica in ways that engineers can only dream about.

University of Wisconsin professor Michael Sussman, the co-corresponding author on the paper, says the new findings will help his group start manipulating the genes responsible for silica production and potentially harness them to produce lines on computer chips. This could vastly increase chip speed because diatoms are capable of producing lines much smaller than current technology allows, he says.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Carbon Iron Silica Thalassiosira carbon dioxide conditions diatom dioxide genes pseudonana

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>