Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists uncover role of cancer stem cell marker: controlling gene expression

22.01.2008
Scientists at Jefferson’s Kimmel Cancer Center in Philadelphia have made an extraordinary advance in the understanding of the function of a gene previously shown to be part of an 11-gene “signature” that can predict which tumors will be aggressive and likely to spread. The gene, USP22, encodes an enzyme that appears to be crucial for controlling large scale changes in gene expression, one of the hallmarks of cancer cells.

As a result, USP22 immediately becomes a potential target for new anti-cancer drugs, says Steven McMahon, Ph.D., associate professor of Cancer Biology at Jefferson Medical College of Thomas Jefferson University, who led the work. And it solves a bit of a biological mystery.

Researchers knew that the gene USP22 was part of a group of 11 genes that are overexpressed in a variety of cancers and that overexpression of USP22 predicts which tumors can go on to spread elsewhere in the body. This group of genes is collectively called the “cancer stem cell signature.”

“Such cancers that have those properties – going on to be metastatic and resistant to therapy – are referred to as having cancer stem cell-like features,” Dr. McMahon explains. “The genes in the signature are in a family of genes implicated as cancer stem cell markers. Many of them code for critical components of signaling pathways that are altered in cancer, making proteins that play roles in tumor growth.” But unlike the other genes in the stem cell signature, the exact function of USP22 was not known.

... more about:
»Expression »McMahon »Myc »Signature »Stem »USP22

Reporting January 18, 2008 in the journal Molecular Cell, Dr. McMahon and his co- workers have shown that not only is USP22 overexpressed in cancer cells, its enzymatic activity is necessary for some of the global changes in gene expression patterns that occur in these cells.

In one example, they looked at the relationship between MYC and USP22. MYC, which is among the most commonly overexpressed genes in cancer, encodes a protein that controls the expression of thousands of other genes. The scientists showed that USP22 is a critical partner of MYC and that by depleting cells of USP22, they could prevent MYC from working properly, stopping it from inducing the invasive growth of cancer cells.

“We’ve shown that the MYC pathway is among the transcriptional programs that require USP22,” Dr. McMahon says. “Identifying USP22 as a global transcription regulator helps explain why it is part of this aggressive stem cell signature.”

Dr. McMahon and his group determined how USP22 works at the biochemical level and found that it is part of a large complex of proteins called human SAGA. According to Dr. McMahon, these proteins are responsible for turning on genes, helping them get expressed more efficiently. This suggests that the genes that are turned on by the USP22 complex are important for altering cancerous cells in such ways that they become more aggressive and metastatic.

“Discovering the identity of the 11-gene signature that predicts aggressive, therapy- resistant tumors a few years ago was certainly a critical advance in terms of the ability to diagnose and stratify patients,” Dr. McMahon says. “Since USP22 is an enzyme, the type of protein that is easiest to target with drugs, our new findings may help extend these earlier discoveries to the point where therapeutics can be developed. There are already drugs being used in cancer patients that attack other enzymes in this pathway, and there are companies interested in extending this to find USP22 inhibitors.”

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: Expression McMahon Myc Signature Stem USP22

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>