Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viroporins, membrane-permeabilizing proteins of the poliomyelitis virus

16.01.2008
A research team from the Universidad Autónoma de Madrid directed by Professor Luís Carrasco has published new discoveries concerning the membrane permeabilizing proteins of the polio virus.

Mechanisms that create non selective pores in cellular membranes have been a defence and attack tool used by a wide range organisms form time immemorial. Cytotoxic proteins with this capacity are produced by bacteria, amoebas, fungi, anemone, and vertebrates (as part of their immune system) as well as in the poison of some arthropods and snakes.

Although, the proteins that are capable of producing such destabilising pores in the cellular membrane of organisms can be very different in terms of the sequence of amino acids that forms them, they all create permeabilizing structures that increase the overall permeability of the semi-permeable cellular membrane allowing for a passive flow of ions and other small substances. Up to now there was no evidence of such properties from viral origin.

The research group led by Professor Luis Carrasco from the Centro de Biología Molecular Severo Ochoa (UAM-CSIC) in Madrid has been studying the mechanism of late permeabilization caused by different viruses and among them the poliomyelitis virus. In the late stages of the infection produced by most animal viruses, a permeabilization phenomenon takes place in the cellular membranes that is very important to ensure an easier release of the new viral particles to the exterior of the cell.

In the last few years, different studies have demonstrated that the individual expression of certain viral genes could reproduce this process in several cellular systems. It was then that the name “viroporin” was established for the viral proteins that shared some structural properties in addition to the permeabilizing effect on the membranes.

The poliovirus protein 2B, known as the causal agent of poliomyelitis, as well as its precursor (2BC), are viroporins that increase the permeability of bacterial and mammalian cell membranes. In previous studies, with the application of biophysical techniques, it was proven that the addition of the purified protein 2B induces permeabilization in artificial membranes (liposomes) to substances of a low molecular weight, fitting in with this phenomenon in cells.

All these demonstrate that the permeabilization mechanism of viroporins could be similar to that of some toxins that create pores. In the recently published Journal of Molecular Biology, the research group managed by Professor Carrasco in collaboration with Dr. Nieva and Dr. Sánchez-Martínez from the Universidad del País Vasco as well as the research team directed by Dr. Rispoli from the Università di Ferrara (Italy), present proof of the intrinsic capabilities of viroporin 2B to create stable pores with set dimensions in the cellular membranes. The contributing researchers have determined the region of protein 2B that constitutes the pore and have investigated its characteristics. To do this they used chemical synthesis to obtain short fragments (peptides) that would cover the different areas of the complete protein and out of all the sampled peptides indentified that only one helical peptide exhibited permeabilizing activity in cells when added in a very low concentration. This peptide can introduce itself into both the cellular membrane as well as the liposomes, and only allowed the flow of very small compounds and not macromolecules, which enabled the approximation of the inner diameter of the pore.

Finally, the researchers had managed to confirm in physiological conditions, the presence of the pores formed by the peptide derived from the viroporin 2B. A new technique developed by the Italian researchers, using a series of electro physiological methods, detects the formation of ion channels only a few seconds after applying the peptide directly to an individual cell. Therefore, the viroporin 2B of the poliomyelitis virus constitutes a new class of pore forming protein that are synthesised during infection and act like toxins inside the infected cells.

The study of viroporins and the detection of the regions responsible for their permeabilizing function open up an interesting field of investigation with several future applications such as a base for new cytotoxic drugs. In addition, these studies set the base for the design of new peptides that would interfere with the pore formation and antiviral compounds capable of inhibiting the function of viroporins in the infection process.

Oficina de Cultura Científica | alfa
Further information:
http://dx.doi.org/10.1016/j.jmb.2007.09.058
http://www.uam.es

Further reports about: Ion Peptide Poliomyelitis Pore permeabilization permeabilizing viroporin

More articles from Life Sciences:

nachricht Elucidating cuttlefish camouflage
18.10.2018 | Max-Planck-Institut für Hirnforschung

nachricht Sensory Perception Is Not a One-Way Street
17.10.2018 | Eberhard Karls Universität Tübingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Elucidating cuttlefish camouflage

18.10.2018 | Life Sciences

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>