Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viroporins, membrane-permeabilizing proteins of the poliomyelitis virus

16.01.2008
A research team from the Universidad Autónoma de Madrid directed by Professor Luís Carrasco has published new discoveries concerning the membrane permeabilizing proteins of the polio virus.

Mechanisms that create non selective pores in cellular membranes have been a defence and attack tool used by a wide range organisms form time immemorial. Cytotoxic proteins with this capacity are produced by bacteria, amoebas, fungi, anemone, and vertebrates (as part of their immune system) as well as in the poison of some arthropods and snakes.

Although, the proteins that are capable of producing such destabilising pores in the cellular membrane of organisms can be very different in terms of the sequence of amino acids that forms them, they all create permeabilizing structures that increase the overall permeability of the semi-permeable cellular membrane allowing for a passive flow of ions and other small substances. Up to now there was no evidence of such properties from viral origin.

The research group led by Professor Luis Carrasco from the Centro de Biología Molecular Severo Ochoa (UAM-CSIC) in Madrid has been studying the mechanism of late permeabilization caused by different viruses and among them the poliomyelitis virus. In the late stages of the infection produced by most animal viruses, a permeabilization phenomenon takes place in the cellular membranes that is very important to ensure an easier release of the new viral particles to the exterior of the cell.

In the last few years, different studies have demonstrated that the individual expression of certain viral genes could reproduce this process in several cellular systems. It was then that the name “viroporin” was established for the viral proteins that shared some structural properties in addition to the permeabilizing effect on the membranes.

The poliovirus protein 2B, known as the causal agent of poliomyelitis, as well as its precursor (2BC), are viroporins that increase the permeability of bacterial and mammalian cell membranes. In previous studies, with the application of biophysical techniques, it was proven that the addition of the purified protein 2B induces permeabilization in artificial membranes (liposomes) to substances of a low molecular weight, fitting in with this phenomenon in cells.

All these demonstrate that the permeabilization mechanism of viroporins could be similar to that of some toxins that create pores. In the recently published Journal of Molecular Biology, the research group managed by Professor Carrasco in collaboration with Dr. Nieva and Dr. Sánchez-Martínez from the Universidad del País Vasco as well as the research team directed by Dr. Rispoli from the Università di Ferrara (Italy), present proof of the intrinsic capabilities of viroporin 2B to create stable pores with set dimensions in the cellular membranes. The contributing researchers have determined the region of protein 2B that constitutes the pore and have investigated its characteristics. To do this they used chemical synthesis to obtain short fragments (peptides) that would cover the different areas of the complete protein and out of all the sampled peptides indentified that only one helical peptide exhibited permeabilizing activity in cells when added in a very low concentration. This peptide can introduce itself into both the cellular membrane as well as the liposomes, and only allowed the flow of very small compounds and not macromolecules, which enabled the approximation of the inner diameter of the pore.

Finally, the researchers had managed to confirm in physiological conditions, the presence of the pores formed by the peptide derived from the viroporin 2B. A new technique developed by the Italian researchers, using a series of electro physiological methods, detects the formation of ion channels only a few seconds after applying the peptide directly to an individual cell. Therefore, the viroporin 2B of the poliomyelitis virus constitutes a new class of pore forming protein that are synthesised during infection and act like toxins inside the infected cells.

The study of viroporins and the detection of the regions responsible for their permeabilizing function open up an interesting field of investigation with several future applications such as a base for new cytotoxic drugs. In addition, these studies set the base for the design of new peptides that would interfere with the pore formation and antiviral compounds capable of inhibiting the function of viroporins in the infection process.

Oficina de Cultura Científica | alfa
Further information:
http://dx.doi.org/10.1016/j.jmb.2007.09.058
http://www.uam.es

Further reports about: Ion Peptide Poliomyelitis Pore permeabilization permeabilizing viroporin

More articles from Life Sciences:

nachricht A Varied Menu
25.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Key evidence associating hydrophobicity with effective acid catalysis
25.03.2019 | Tokyo Metropolitan University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>