Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers move 2 steps closer to understanding genetic underpinnings of autism

14.01.2008
Reports from 3 groups validate earlier finding

Today’s issue of the American Journal of Human Genetics (AJHG), describes what might be a corner piece of the autism puzzle—the identification and subsequent validation of a gene linked to the development of autism by three separate groups of scientists. An accompanying commentary by Dr. Dietrich Stephan, Director of the Neurogenomics Division at the Translational Genomics Research Institute’s (TGen), further explains the findings.

Autism is a perplexing disease whose cause remains unexplained. It has long been suggested that environmental factors, linked with genetics, play a role in causing the disorder. As recently as last week, researchers in California published a study that found no proof linking autism with a mercury-based preservative found in childhood vaccines. While there are no clear-cut answers, researchers are one step closer to understanding autism’s genetic cause.

In March 2006, Dr. Stephan, Director of TGen’s Neurogenomics Division, led a team of researchers at TGen and collaborators at the Clinic for Special Children (CSC) in Strasburg, PA, that identified a gene called CNTNAP2. When mutated, this gene indicated a predisposition to autism in a specific population of Old Order Amish children from Pennsylvania.

... more about:
»ASD »CNTNAP2 »Diagnostic »SARRC »TGen »disorder »initial

One of the most important principles in science is the ability to replicate results. Now, three groups of researchers from Yale University, the University of California, Los Angeles, and the Johns Hopkins University, have replicated the initial finding in the general population, unequivocally implicating this gene as causing the newly defined Type 1 autism. All three studies plus Dr. Stephan’s commentary are published in the January edition of AJHG.

According to Dr. Erik Puffenberger, Laboratory Director of the Clinic for Special Children, “Our previous finding of association between loss of CNTNAP2 function and autistic behavior has been validated in the general population. This is a very exciting step for autism research. It also highlights the enormous potential of the ‘small science’ approach. Our initial work used only four affected Amish children. Careful study of these four patients uncovered the association between CNTNAP2 and autistic behaviors. From that small beginning, CNTNAP2 has now been implicated as a significant risk factor for autism.”

Autism spectrum disorder (ASD) is a broadly used term for a set of developmental disorders that emerges in infants and young children. ASD impairs a child's intuitive thought, language and social development to varying degrees. Most individuals diagnosed with ASD require lifelong supervision and care; the most severely affected are unable to speak. ASD is the fastest growing developmental disability in the U.S. Two decades ago, roughly one child in 10,000 was diagnosed with ASD; it now affects one in 150 births.

“The field of genetics is replete with examples where researchers are unable to reproduce results. Here we have independent confirmation in multiple groups using large samples sizes,” said Dr. Stephan. “Now that the results of the initial CNTNAP2 gene finding have been replicated, it strongly supports the notion that the ‘broken version’ of CNTNAP2 is recognized as a cause of autism in the general population.”

In collaboration with the Phoenix-based Southwest Autism Research & Resource Center (SARRC), a nonprofit community-based organization dedicated to research, education and resources for individuals with ASDs and their families, TGen will apply these research findings to children in Arizona who have been diagnosed with ASD.

“The heterogeneity of the disorder has frustrated our past efforts in the search for causes of autism,” said Dr. Raun Melmed, medical director and co-founder of SARRC. “This exciting discovery will further our capacity to individualize approaches to the diagnosis and treatment of autism.”

The next step, noted Dr. Stephan in the commentary, is to develop a diagnostic to test for the CNTNAP2 mutation. If physicians could implement behavioral interventions early enough, children with autism may have a better chance of developing normally.

The initial discovery of CNTNAP2 in autism was published in the March 30, 2006, issue of the New England Journal of Medicine.

About TGen

The Translational Genomics Research Institute (TGen) is a non-profit 501(c)(3) organization focused on developing earlier diagnostics and smarter treatments. Translational genomics research is a relatively new field employing innovative advances arising from the Human Genome Project and applying them to the development of diagnostics, prognostics and therapies for cancer, neurological disorders, diabetes and other complex diseases. TGen's research is based on personalized medicine. The institute plans to accomplish its goals through robust and disease-focused research.

About the Clinic For Special Children

The Clinic for Special Children was established in 1989 to provide early diagnosis, affordable laboratory services, and comprehensive medical and nutritional care for Old Order Amish and Mennonite children that suffer from genetic disorders. The clinic mission encompasses four aims: 1) Make high-quality medical care for special children accessible, affordable, and culturally effective; 2) Develop comprehensive methods of newborn screening and follow-up care for genetic disorders prevalent among the Plain people; 3) Develop practical clinical applications for modern molecular genetic technologies; and 4) Elucidate disease mechanisms for the purpose of improving patient treatment and outcome. Clinical work at the CSC is funded by private donations from individuals, foundation contributions, and an endowment fund established for this purpose. Many collaborating scientists and laboratories donate specialized services. The CSC receives no money from state or federal sources and is a private non-profit 501(c)(3) charitable institution.

About SARRC

Founded in 1997, the Southwest Autism Research & Resource Center (SARRC) is a nonprofit, community-based organization dedicated to autism research, education and resources for children and young adults with autism spectrum disorders (ASDs) and their families. SARRC undertakes self-directed and collaborative research projects, serves as a satellite site for national and international projects, and provides up-to-date information, training and assistance to families and professionals about ASDs. For more information about SARRC, call (602) 340-8717 or visit www.autismcenter.org.

Amy Erickson | EurekAlert!
Further information:
http://www.tgen.org
http://www.autismcenter.org

Further reports about: ASD CNTNAP2 Diagnostic SARRC TGen disorder initial

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Physics: Not everything is where it seems to be

15.10.2018 | Physics and Astronomy

Microfluidic molecular exchanger helps control therapeutic cell manufacturing

15.10.2018 | Life Sciences

Link between Gut Flora and Multiple Sclerosis Discovered

15.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>