Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecules can block breast cancer's ability to spread

11.01.2008
Researchers have identified a specific group of microRNA molecules that are responsible for controlling genes that cause breast cancer metastasis. The study, led by scientists at Memorial Sloan-Kettering Cancer Center (MSKCC), appears in the January 10, 2008, issue of Nature.

MicroRNAs are known to inhibit the activity of entire sets of genes associated with cancer metastasis – a process that leads to the majority of cancer-related deaths. The new work explains how the loss of certain microRNAs allows cancer cells to migrate through organ tissue and to grow more rapidly.

The researchers examined human breast cancer cells with strong metastatic ability and found that the cells had lost large numbers of three different microRNA molecules. Conversely, when researchers put those molecules back into human breast cancer tumors in mice, the tumors lost their ability to spread.

In addition, the researchers looked at breast cancer patients and discovered that those with tumors that had lost these molecules were much more likely to suffer from cancer metastasis to the lung and bone.

... more about:
»MicroRNA »ability »genes »metastasis

“The identification of molecules that inhibit a cell’s metastatic potential may help guide clinical decision-making in the future by enabling oncologists to more accurately identify patients at highest risk for metastatic relapse,” said the study’s lead author Sohail Tavazoie, MD, PhD, a postdoctoral fellow in the Oncology-Hematology Fellowship program at MSKCC.

In further analyzing one of these microRNAs, called miR-335, investigators found that miR-335 works by suppressing certain genes that are associated with human metastasis, particularly SOX4, which acts as a transcription factor (meaning that it regulates a group of genes responsible for cell development and migration), and tenascin-C, which functions outside the cell in what is called the extracellular matrix and is implicated in cell migration.

“We now have a better understanding of the role this molecular pathway plays as a suppressor of breast cancer’s ability to spread to the lung and bone, and we have identified the genes involved in that process. These findings may enhance our ability to come up with more effective drugs to prevent or treat cancer metastasis,” said Joan Massagué, PhD, Chair of the Cancer Biology and Genetics Program at MSKCC, a Howard Hughes Medical Institute Investigator, and the study’s senior author.

Esther Napolitano | EurekAlert!
Further information:
http://www.mskcc.org

Further reports about: MicroRNA ability genes metastasis

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>