Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BERT tells ERNI it’s time to grow a brain

09.01.2008
UCL (University College London) scientists have discovered how two proteins called BERT and ERNI interact in embryos to control when different organ systems in the body start to form, deepening our understanding of the development of the brain and nervous system and stem cell behaviour.

The new research, published today in PLOS Biology, solves a part of the puzzle of how vertebrates prioritise the order in which they begin to develop different sets of structures. During development only a few signals instruct cells to form thousands of cell types, so the timing of how cells interpret these signals is critical.

An international research team led by Professor Claudio Stern of the UCL Department of Anatomy & Developmental Biology has shown that the first stage of development of the brain and nervous system is, paradoxically, a block on its progression.

The scientists describe a sequence of reactions that take place when vertebrate embryos are only a few hours old that together act as a timing mechanism, temporarily stopping the development of neural cells - cells that go on to form the brain and nervous system. This gives a head-start to other cells in the embryo that will go on to create the body’s internal organs and skin and prevents the nervous system from developing prematurely.

... more about:
»BERT »ERNI »Embryo »nervous system

Dr Costis Papanayotou of the Stern laboratory discovered a new protein - BERT - which binds with the protein ERNI (previously discovered by Professor Stern’s team) and other proteins to unblock a gene (Sox2) that gives the green light to cells to start forming the brain and nervous system.

Professor Stern said: “Scientists have been looking for a long time for the switches that determine when cells in the embryo take on specific roles. Our work shows that the proteins BERT and ERNI have an antagonistic relationship: BERT is stronger and overrides ERNI’s suppression of the Sox2 gene, which has a crucial function in setting up the nervous system.”

As the Sox2 gene is also needed for stem cells to retain their ability to take on a variety of roles in the body and to renew themselves, this research also advances our knowledge of stem cell behaviour, which could have implications for this growing area of medical research.

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk

Further reports about: BERT ERNI Embryo nervous system

More articles from Life Sciences:

nachricht Dead cells disrupt how immune cells respond to wounds and patrol for infection
21.05.2019 | University of Sheffield

nachricht New study shows: Tropical corals reflect ocean acidification
21.05.2019 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

Chaperones keep the tumor suppressor protein p53 in check: How molecular escorts help prevent cancer

21.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>