Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find protein potential drug target for treatment-resistant prostate cancer

03.01.2008
Scientists at Jefferson’s Kimmel Cancer Center in Philadelphia have found that a signaling protein that is key to prostate cancer cell growth is turned on in nearly all recurrent prostate cancers that are resistant to hormone therapy. If the findings hold up, the protein, called Stat5, may be a specific drug target against an extremely difficult-to-treat cancer.

In addition, the researchers, led by Marja Nevalainen, M.D., Ph.D., associate professor of Cancer Biology at Jefferson Medical College of Thomas Jefferson University, also showed that the convergence of two biological pathways could be responsible for making such hormone-resistant prostate cancers especially dangerous. They have found that a synergy between Stat5 and hormone receptors in recurrent prostate cancer cells helps each maintain its activity. Dr. Nevalainen and her co-workers report their findings January 1, 2008 in the journal Cancer Research.

“These findings validate Stat5 as a potential drug target in prostate cancer, and in particular, in a form of prostate cancer for which there are no effective therapies,” Dr. Nevalainen says.

Men with primary prostate cancer usually have either surgery or radiation, whereas subsequent disease is frequently treated by hormone therapy. But if the cancer recurs again, years later, it can be more aggressive and typically fails to respond to hormone treatment. In previous work, the researchers showed that when Stat5 is turned on in primary prostate cancer, men are more likely to have recurrent disease.

In the current study, the team examined human prostate cancer cells of 198 patients with prostate cancer recurrence. They found that Stat5 was active in 74 percent of all recurrent prostate cancers. Of these patients, 127 had been treated with androgen deprivation therapy. The researchers found Stat5 was active in 95 percent of these hormone resistant tumors, meaning it was more likely to be active if the patient had been treated with hormone deprivation therapy.

Dr. Nevalainen shows that Stat5 interacts with the androgen receptors and keeps them “transcriptionally active.” Next, the scientists would like to conduct tests in animal models to see if this synergy promotes androgen-independent prostate tumor growth, and whether or not Stat5 synergizes with androgen receptors activated by adrenal androgens, which are present in the absence of testicular androgens during the hormone therapy of prostate cancer in patients.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: Androgen Nevalainen Protein Stat5 Target prostate cancer recurrent

More articles from Life Sciences:

nachricht Cancer cachexia: Extracellular ligand helps to prevent muscle loss
25.02.2020 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht The genetic secret of night vision
25.02.2020 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>