Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lung cancer cells' survival gene seen as drug target

03.01.2008
One of the deadliest forms of cancer appears to carry a specific weakness.

When a key gene called 14-3-3zeta is silenced, lung cancer cells can't survive on their own, researchers have found.

The gene is a potential target for selective anti-cancer drugs, says Haian Fu, PhD, professor of pharmacology, hematology & oncology at Emory University School of Medicine and Emory Winship Cancer Institute.

The research results will be published the week of Dec. 24 in the Proceedings of the National Academy of Sciences (PNAS). The paper's first author is Zenggang Li, PhD, a postdoctoral fellow in Dr. Fu's laboratory.

Lung cancer kills more Americans annually than any other type of malignancy, according to the National Cancer Institute. Yet treatment options are very limited, Dr. Fu says.

"The recent trend towards targeted therapies requires us to understand the altered signaling pathways in the cell that allow cancer to develop," he says. "If you think about genes that are dysregulated in cancer as drivers or passengers, we want to find the drivers and then, aim for these drivers during drug discovery."

Dr. Fu and his collaborator, Fadlo Khuri, MD, deputy director of clinical and translational research at Emory Winship Cancer Institute, chose to focus on the gene 14-3-3zeta because it is activated in many lung tumors. In addition, recent research elsewhere shows that survival of lung cancer patients is worse if the gene is on overdrive in their tumors, Dr. Fu says.

14-3-3 genes are found in mammals, plants and fungi. In the human body, they come in seven flavors, each given a Greek letter. Scientists describe the proteins they encode as adaptors that clamp onto other proteins. The clamping function depends on whether the target protein is phosphorylated, a chemical switch that regulates processes such as cell division, growth, or death.

"We knew that 14-3-3 is important in controlling EGFR (epidermal growth factor receptor) signaling, which is a main pathway driving lung cancer," Dr. Fu says. A couple of recently introduced drugs that were shown to be effective against lung cancer target EGFR, he adds.

In the PNAS study, the authors used a technique called RNA interference to selectively silence the 14-3-3zeta gene. They found that when 14-3-3zeta is turned off, lung cancer cells become less able to form new tumor colonies in a laboratory test.

One of the most important properties of cancer cells is their ability to grow and survive without touching other cells or the polymers that connect them. While the authors found that the cells with 14-3-3zeta turned off do not grow more slowly, the cells are vulnerable to anoikis (Greek for homelessness), a form of cell death that happens when non-cancerous cells that are accustomed to growing in layers find themselves alone.

Further experiments showed that 14-3-3zeta regulates a set of proteins called the Bcl2 family that control programmed cell death, and its absence upsets the balance within the family.

"You can see how control of anoikis means 14-3-3zeta could play a critical role in cancer invasion and metastasis," Dr. Fu says. "The mechanistic question we still haven't answered is: what makes zeta unique so that it can't be replaced by the others."

The finding has implications beyond lung cancer, in that 14-3-3zeta is also activated in other forms of cancer such as breast and oral, he notes.

"Dr. Fu and his team's findings unmask the role of 14-3-3 zeta in the survival advantage of lung cancer cells and their dependence on it," Dr. Khuri says. "Targeting this critical molecule could lead to meaningful therapeutic progress."

Since 14-3-3zeta was identified as a promising target for drugs, Dr. Fu and his co-workers are making use of a robot-driven screening program at the Emory Chemical Biology Discovery Center to sort through thousands of chemicals that may disrupt its interactions specifically.

They hope to identify these compounds rapidly and move them from bench into clinic testing to benefit patients.

Vince Dollard | EurekAlert!
Further information:
http://www.emoryhealthcare.org

Further reports about: 14-3-3zeta Target cancer cells lung cancer survival

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>