How actin networks are actin’

A central player in generating actin networks is the Arp2/3 complex. In most cells, there are multiple proteins that can regulate the function of the Arp2/3 complex, although how the activities of these proteins are coordinated in the cell to generate the appropriate network of actin filaments in a complex, multi-step process remains unclear.

To better understand how multiple Arp2/3 regulatory proteins are coordinated in the cell, Brian Galletta, Dennis Chuang, and John Cooper used a combination of live-cell imaging, computer-aided particle tracking, and quantitative motion analysis to determine how disruption of the function of each of these regulatory proteins, individually and its combination, altered the movement of actin patches in bakers yeast.

These studies have revealed that while Arp2/3 regulatory proteins sometimes play overlapping roles in this process, they often play unique roles. The molecular machinery contained in actin patches can be found throughout nature. Therefore, Brian Galleta says that, “these studies should shed light on how actin networks are regulated in human cells during normal cell function and allow for a better understanding of how actin misregulation might contribute to the progression of disease processes including cancer, inflammation, and infection.”

Media Contact

Andrew Hyde alfa

More Information:

http://www.plosbiology.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors