Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Causative gene for human "lobster claw" syndrome identified

21.05.2002


A new study using mouse "knockouts" shows that genes that control limb formation in insects have similar functions in mammals.



Split hand/foot malformation (SHFM) or ectrodactyly (the "lobster claw" anomaly), is a severe congenital malformation syndrome characterised by a profound median cleft of the hands and/or feet, typically associated with absence or fusion of the remaining fingers. This condition is quite frequent as about 6 cases of SHFM are observed for every 10,000 human births.

Several forms of SHFM are each associated with a different genetic mutation. One of the most frequent forms called Type I is associated with a specific region of human chromosome 7 that contains two homeobox genes, DLX5 and DLX6. These genes are similar to a gene in insects called distal-less that controls limb development. When this gene is defective in the fruit fly the distal part of the insect limb is missing. It was therefore assumed that DLX5 and DLX6 might have conserved this function through evolution and could have a role in vertebrate limb development. However, in spite of intensive searches for mutations of these genes in SHFM patients, no direct evidence was found to date on their involvement in mammalian limb development.


A research team led by Dr. Giovanni Levi from the Centre National de la Recherche Scientifique (CNRS) working in the Museum of Natural History in Paris and co-workers from the Italian Institute for Cancer Research (IST) supported by Telethon (Italy), has now generated knockout mice in which both the Dlx5 and Dlx6 genes have been inactivated through gene targeting and embryonic stem cells. These Dlx5/Dlx6 mutant mice have a limb defect that is very similar to that observed in SHFM1 patients. This finding, to be published in the June 2002 issue of genesis, is critical for an understanding of the molecular origin of the disease as it demonstrates that these are the genes responsible for the SFHM syndrome.

These studies should also warrant renewed efforts to find specific human mutations associated with DLX5 and DLX6 genes through genomic and mutational analyses. It is possible that knowledge of these genetic defects might permit early prenatal diagnosis of the disease. Furthermore, the availability of an animal model of the human disease will permit a molecular understanding of the etiology of SHFM1. Detailed studies of these mice will make it possible to understand how the genetic lesion is associated with a limb malformation in humans.

The data reported in Dr. Levi`s article show that in spite of the very different structure of insect and vertebrate limbs, the same genes control their development. This is further proof that the limb of a fly is homologous to a human limb.

Joanna Gibson | alphagalileo

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>