Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanical insights into wound healing and scar tissue formation

18.12.2007
Cellular “Popeyes” respond to stress and transform into muscle-bound wound-healers

New research published today in the Journal of Cell Biology illuminates the mechanical factors that play a critical role in the differentiation and function of fibroblasts, connective tissue cells that play a role in wound healing and scar tissue formation.

When we are injured, the body launches a complex rescue operation. Specialized cells called fibroblasts lurking just beneath the surface of the skin jump into action, enter the provisional wound matrix (the clot) and start secreting collagen to close the wound as fast as possible. This matrix is initially soft and loaded with growth factors. The fibroblasts “crawl” around the matrix, pulling and reorganizing the fibers. The matrix grows stiffer, and at a certain point, the fibroblasts stop migrating and, like Popeye, change into powerful contractile cells, anchoring themselves to the matrix and pulling the edges of the wound together.

The research reported today reveals for the first time that a mechanical mechanism is crucial for this switch from migrating to contractile cells. To make this change, the fibroblasts need to get at their “spinach” – the growth factor sitting in the matrix which, once liberated, stimulates the production of smooth-muscle proteins. Previously, researchers postulated that the fibroblasts did this by digesting the matrix. But EPFL scientist Boris Hinz, doctoral student Pierre-Jean Wipff and their colleagues have discovered that the cells unlock the growth factor via a purely mechanical process. With experiments using novel cell culture substrates of varying rigidity, they found that at a certain point, the matrix is sufficiently rigid that cell-exerted force allows the growth factor to pop out, like candy from a wrapper. Once the growth factor is available, the fibroblast expresses the contractile proteins, sticks more firmly to the matrix and starts to contract, pulling the matrix tightly together. In the process it liberates yet more growth factor that in turn stimulates other fibroblasts to become contractile. The mechanical nature of the switch ensures that the contraction only develops when the matrix is “ready.”

... more about:
»Fibroblast »Matrix »SCAR »contractile »function »mechanical

Although this process will heal a wound quickly, if left unchecked, it can also lead to a buildup of fibrous tissue. Following trauma to vital organs such as the heart, lung, liver and kidney, overzealous fibroblasts can continue to build fibrous strands, leading to scar tissue buildup that can impair the organ’s function. This condition, called “fibrosis”, can be fatal. Fibroblasts are also the culprits in problems caused by implants – if the implant is too smooth, it never becomes properly incorporated into the connective tissue. But if it is too rough, scar tissue develops around it and it won’t function properly. Occasionally, following plastic surgery, unsightly excessive scar tissue can develop in the skin as well. The process can also cause problems in mesenchymal stem cell cultures – if the culture’s substrate is stiff, considerable efforts have to be made to prevent the stem cells from turning prematurely into fibroblasts instead of the desired cell type. Controlling the rigidity of the cell culture is therefore critical.

This new understanding of the mechanical nature of fibroblast activation could be used to reduce or prevent fibrosis from occurring, says Hinz, without inhibiting the growth factor, which serves many other vital functions in the body. There are several possibilities: “You could interfere with the way the cells grab onto the growth factor complex, you could interfere with their attachment points on the matrix, and you could interfere with their contractile forces so that the matrix never gets stiff enough to liberate the growth factor,” he suggests.

Mary Parlange | alfa
Further information:
http://www.epfl.ch

Further reports about: Fibroblast Matrix SCAR contractile function mechanical

More articles from Life Sciences:

nachricht Mutation that causes autism and intellectual disability makes brain less flexible
20.11.2018 | Institute of Science and Technology Austria

nachricht The sweet side of reproductive biology
20.11.2018 | Leibniz-Institut für Nutzierbiologie (FBN)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Mutation that causes autism and intellectual disability makes brain less flexible

20.11.2018 | Life Sciences

The sweet side of reproductive biology

20.11.2018 | Life Sciences

Fading stripes in Southeast Asia: First insight into the ecology of an elusive and threatened rabbit

20.11.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>