Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers shine the light of venus to learn how the herpes virus invades cells

17.12.2007
University of Pennsylvania researchers have uncovered an important step in how herpes simplex virus, HSV-1, uses cooperating proteins found on its outer coat to gain entry into healthy cells and infect them. Further, the study’s authors say, they have demonstrated the effectiveness of monitoring these protein interactions using biomolecular complementation.

The findings, published in the Proceedings of the National Academy of Sciences, provide a better understanding of the mechanism that viruses use to conquer healthy cells.

Beginning with the knowledge that HSV-1 glycoprotein gD binds to cell receptors in a healthy cell to begin virus-cell fusion, researchers questioned how other proteins combined or cooperated on the attack. They “tagged” additional HSV-1 proteins with a fluorescent marker to witness the complex battle, thus demonstrating that gD somehow signals to three other herpes proteins -- gB, gH and gL -- to swing into action, continuing fusion and ultimately releasing the viral genome into the cell. Once in the cell, the viral genome takes over and directs the cell to make more virus.

“Watching these proteins interact tells us a lot about HSV and other herpes viruses and how they attack the body,” Roselyn Eisenberg, professor of microbiology in Penn’s School of Veterinary Medicine, said. “The first thing this virus does when it finds a cell is fool the cell into thinking the virus is a welcome guest when it is actually a dangerous intruder. But getting in is not easy. It takes four viral proteins to do it, and they must cooperate with each other in ways that we are only beginning to understand.”

... more about:
»Herpes »Interaction »Viral »shine

Monitoring the interactions required a novel technique. Researchers assumed in their hypothesis that these proteins had to physically interact with each other but could not demonstrate the split-second interaction. Penn researchers hypothesized that the encounter might be too brief and decided to look for ways to “freeze” it long enough to take a snapshot.

Knowing that virus-cell fusion starts when gD binds to a cell receptor, these researchers monitored the remaining protein interactions using bimolecular complementation, a newly developed process that employs, in this case, a protein called Venus. Venus, like the planet, shines brightly against a dark background. Researchers split the yellow Venus protein in two, creating tags which were stitched to either gB or gH, the proteins they believed played a role in fusion. When Venus is split in half, it no longer glows yellow. But when half-Venus-gB and half-Venus-gH combine, even very briefly as they do, the two halves of Venus interact and shine again.

The team used microscopy to look for the viral protein-protein interactions during fusion and thus found that fusion requires proteins gB, gH and gL, called the “core fusion machinery” of all herpes viruses.

“This is a complex mechanism we’re looking at,” Gary Cohen, professor of microbiology in Penn’s School of Dental Medicine, said. “We still have a long way to go but this is a major step forward for us and the field, and now we have a new toy to play with to help us with a whole new set of questions. That is the fun of science: there is always another question. “

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

Further reports about: Herpes Interaction Viral shine

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>