Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular code broken for drug industry's pet proteins

14.12.2007
All cells are surrounded by protective, fatty membranes.In the cell membrane there are thousands of membrane proteins that transport nutritional substances, ions, and water through the membrane.

Membrane proteins are also necessary for cells to recognize each other in the body and for a nervous system, for example, to be formed. Researchers at Stockholm University in Sweden have now managed to reveal the "molecular code" that governs the insertion of proteins in the cell membrane. This work is reported in an article being published on December 13 in the journal Nature.

About 25 percent of all proteins in a cell are found in the cell membrane. Since they regulate all communication between the inside of the cell and the surrounding environment, many membrane proteins are crucial to the life of the cell. Disruptions of their functions often lead to diseases of various kinds. For the drug industry, membrane proteins are high priority "drug targets."

To be suitable for deployment in the fatty cell membrane, all membrane proteins must be lipophiles ("fat-lovers"). All cells have special machinery for producing and dealing with "fatty" proteins and to see to it that they are deployed in proper manner in the cell membrane. The Stockholm University scientists have developed a method for the detailed study of the properties of a membrane protein that are required for it to be recognized by the cell machinery. A couple of years ago the research team published a first article in Nature in which they managed to show that there is a "fat threshold" that determines whether a protein can be deployed to a membrane or not. In this new study they have fully revealed the molecular code that governs the structure of membrane proteins.

... more about:
»Drug »Membrane »cell membrane

"Now that we have deciphered the code, we can determine with a high degree of certainty which parts of a protein will fasten in the membrane." says Gunnar von Heijne.

This new knowledge will help researchers all over the world who are trying to understand more about the cell and its membrane, not least in the drug industry.

"Interest in membrane proteins is at a peak right now, and our findings can be key pieces of the puzzle for pharmaceutical chemists working with drug design, for example," says Gunnar von Hejne.

Name of article
Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature, December 13.

Maria Erlandsson | alfa
Further information:
http://www.eks.su.se

Further reports about: Drug Membrane cell membrane

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>