Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Differences Influence Aging Rates in the Wild

13.12.2007
Long-lived, wild animals harbor genetic differences that influence how quickly they begin to show their age, according to the results of a long-term study reported online on December 13th in Current Biology, a Cell Press publication.

Evidence for the existence of such genetic variation for aging rates—a central tenet in the evolutionary theory that explains why animals would show physiological declines as they grow older—had largely been lacking in natural populations until now, the researchers said.

“We’ve found that individuals differ in their rates of aging, or senescence, and that these differences are (at least in part) caused by genetic effects so they will be inherited,” said Alastair Wilson of the University of Edinburgh. “While the genetic effects we found are completely consistent with existing theory, scientists hadn’t previously managed to test this theory properly except in controlled laboratory experiments.

“We’ve also done this work on long-lived mammals,” he added. “For someone interested in the evolution of aging and senescence in humans, these are going to be more relevant organisms than Drosophila [fruit flies].”

... more about:
»Theory »Variation »effects »individual »selection

Scientists normally expect genetic mutations having bad effects to be removed by natural selection, Wilson explained. Conversely, selection will lead to an increase in the frequency of mutations that are beneficial. “On this basis, any genes with bad effects on survival or reproduction should be removed by selection,” he said. “But if that were true then there is no reason for individuals to deteriorate as they get old.”

Aging therefore raises a critical question: How has natural selection failed to remove genetic effects responsible for such reduced fitness among older individuals? Current evolutionary theory explains this phenomenon by showing that, as a result of the risk of death from environmental causes that individuals experience over the course of their lives, the force of selection inevitably weakens with age, he continued. This, in turn, means that genetic mutations having detrimental effects that are only felt late in life may persist in a population. Although widely accepted, this theory rests on the assumption that there is genetic variation for aging in natural systems.

To look for such genetic variation in the new study, the researchers examined wild Soay sheep and red deer living on two Scottish islands. Those populations were ideal for the study because they provide unparalleled levels of data, including individual survival and reproductive success, for large numbers of long-lived animals, Wilson said. In both study systems, individually marked animals are followed throughout their lives from birth until death, and their relationships to one another are known.

In both the red deer and sheep populations, they found evidence for age-specific genetic effects on “fitness”—a measure combining the animals’ probability of survival and reproduction. “The present study provides, to our knowledge, the first evidence for additive genetic variance in aging rates from a wild, non-model study organism,” the researchers concluded. “Furthermore, the age-specific patterns of additive genetic (co)variation evident in the two populations examined here were entirely consistent with the hypothesis that declines in fitness with age are driven by a weakening of natural selection.”

Cathleen Genova | alfa
Further information:
http://www.cell.com

Further reports about: Theory Variation effects individual selection

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>