Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Differences Influence Aging Rates in the Wild

13.12.2007
Long-lived, wild animals harbor genetic differences that influence how quickly they begin to show their age, according to the results of a long-term study reported online on December 13th in Current Biology, a Cell Press publication.

Evidence for the existence of such genetic variation for aging rates—a central tenet in the evolutionary theory that explains why animals would show physiological declines as they grow older—had largely been lacking in natural populations until now, the researchers said.

“We’ve found that individuals differ in their rates of aging, or senescence, and that these differences are (at least in part) caused by genetic effects so they will be inherited,” said Alastair Wilson of the University of Edinburgh. “While the genetic effects we found are completely consistent with existing theory, scientists hadn’t previously managed to test this theory properly except in controlled laboratory experiments.

“We’ve also done this work on long-lived mammals,” he added. “For someone interested in the evolution of aging and senescence in humans, these are going to be more relevant organisms than Drosophila [fruit flies].”

... more about:
»Theory »Variation »effects »individual »selection

Scientists normally expect genetic mutations having bad effects to be removed by natural selection, Wilson explained. Conversely, selection will lead to an increase in the frequency of mutations that are beneficial. “On this basis, any genes with bad effects on survival or reproduction should be removed by selection,” he said. “But if that were true then there is no reason for individuals to deteriorate as they get old.”

Aging therefore raises a critical question: How has natural selection failed to remove genetic effects responsible for such reduced fitness among older individuals? Current evolutionary theory explains this phenomenon by showing that, as a result of the risk of death from environmental causes that individuals experience over the course of their lives, the force of selection inevitably weakens with age, he continued. This, in turn, means that genetic mutations having detrimental effects that are only felt late in life may persist in a population. Although widely accepted, this theory rests on the assumption that there is genetic variation for aging in natural systems.

To look for such genetic variation in the new study, the researchers examined wild Soay sheep and red deer living on two Scottish islands. Those populations were ideal for the study because they provide unparalleled levels of data, including individual survival and reproductive success, for large numbers of long-lived animals, Wilson said. In both study systems, individually marked animals are followed throughout their lives from birth until death, and their relationships to one another are known.

In both the red deer and sheep populations, they found evidence for age-specific genetic effects on “fitness”—a measure combining the animals’ probability of survival and reproduction. “The present study provides, to our knowledge, the first evidence for additive genetic variance in aging rates from a wild, non-model study organism,” the researchers concluded. “Furthermore, the age-specific patterns of additive genetic (co)variation evident in the two populations examined here were entirely consistent with the hypothesis that declines in fitness with age are driven by a weakening of natural selection.”

Cathleen Genova | alfa
Further information:
http://www.cell.com

Further reports about: Theory Variation effects individual selection

More articles from Life Sciences:

nachricht New technique to determine protein structures may solve biomedical puzzles
12.12.2019 | Dana-Farber Cancer Institute

nachricht NTU Singapore scientists convert plastics into useful chemicals using su
12.12.2019 | Nanyang Technological University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Weizmann physicists image electrons flowing like water

12.12.2019 | Physics and Astronomy

Revealing the physics of the Sun with Parker Solar Probe

12.12.2019 | Physics and Astronomy

New technique to determine protein structures may solve biomedical puzzles

12.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>