Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Repairing the brain

21.09.2015

Two genes unlock potential for treatment of schizophrenia

Research led by scientists from Duke-NUS Graduate Medical School Singapore (Duke-NUS) has linked the abnormal behaviour of two genes (BDNF and DTNBP1) to the underlying cause of schizophrenia. These findings have provided a new target for schizophrenia treatment.


This is an image of a cultured neuron with an added BDNF protein.

Credit: Duke-NUS Graduate Medical School Singapore

Schizophrenia is a devastating mental disorder that affects nearly 1% of the total human population. The dominant cause of the disorder lies in impaired brain development that eventually leads to imbalanced signals within the brain. This imbalance within the brain is thought to cause hallucinations and paranoia in people with schizophrenia.

"We wanted to understand the mechanism by which the brain circuit operates," explained senior author Assistant Professor Shawn Je, from the Neuroscience and Behavioural Disorders Programme at Duke-NUS. "In particular, we wanted to understand the ability of a specific type of cell in the brain, termed interneurons, to modulate brain network activity to maintain a balance in brain signalling."

Dr. Je and his team analysed signalling activity in neuronal cultures that either did not have the DTNBP1 gene or had lowered levels of the gene, because reduced DTNBP1 levels and genetic disruptions of DTNBP1 in mice resulted in schizophrenia-like behaviours. Using multiple model systems, they found that the low levels of DTNBP1 resulted in dysfunctional interneurons and over-activated neuronal network activity. Reducing levels of DTNBP1 also lowered the levels of the secreted protein molecule, BDNF.

BDNF was then shown to be one of the most important factors that regulate the development of a normal brain circuit. It plays an important role in the interneurons ability to connect to the brain. Interneurons receive BDNF via a transport system run by DTNBP1. This can be likened to the delivery of a parcel: DTNBP1 is the driver of the delivery van and without the driver, the parcel BDNF cannot be delivered to the required destination. Without BDNF, the abnormal circuit development and brain network activity observed in schizophrenia patients results.

Additionally, Dr. Je and his team also found that when BDNF levels were restored, brain development and activity were rescued and returned to more normal levels, despite the absence of DTNBP1.

While the two genes DTNBP1 and BDNF have been singled out as risk genes for schizophrenia in studies before, this is the first study to show that the two function together. Pinpointing the importance of the abnormal delivery of BDNF has shed considerable insight into how the brain network develops. It also presents possibilities for potential treatments for schizophrenia designed around enhancing BDNF levels.

In a follow-up study, Dr. Je plans to test if these findings are viable in an animal model. If proven successful, this could mean that correcting the imbalance within the brain circuits of schizophrenia patients may bring us closer to producing a treatment.

###

Study facts at a glance:

  • The study was published online in the journal Biological Psychiatry.
  • DTNBP1 and BDNF are two genes that increase the risk of schizophrenia.
  • Dr. Je's study is the first ever to show that DTNBP1 is required for proper trafficking of BDNF to its appropriate location within the brain circuit.
  • BDNF is required for the development and action of interneurons within the brain circuit that maintains signalling balance.
  • Results have shown that regulating BDNF levels can rescue the signalling imbalance observed in schizophrenia, providing new hope for a treatment.

 

Media Contact

Dharshini Subbiah
dharshini.subbiah@duke-nus.edu.sg
65-961-67532

 @dukenus

http://www.duke-nus.edu.sg 

Dharshini Subbiah | EurekAlert!

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>