Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recovery from Spinal Cord Injuries Can Be Predicted

08.03.2018

Injuries to the spinal cord result in tissue loss in the spinal cord and brain. These neurodegenerative changes can be analyzed in detail using neuroimaging methods. UZH researchers have now for the first time been able to reliably predict the extent of functional recovery in patients suffering from a spinal cord injury two years after a trauma based on the extent and progression of neurodegenerative changes within the first six months after injury.

A trauma to the spinal cord, quickly leads to a progressive loss of nerve tissue. This not only affects the injured area, but over time affects also other parts of the spinal cord and even the brain. These neurodegenerative changes can be explored in detail using magnetic resonance imaging.


How well patients recover from a spinal cord injury can be reliably predicted.

Marc Bolliger

An international team of researchers headed up by Patrick Freund from the Spinal Cord Injury Center of the University of Zurich and the Balgrist University Hospital has now for the first time investigated the extent and progression of microstructural changes over the first two years after a spinal cord injury.

The smaller the initial nerve loss, the better the long-term recovery

In their study, the scientists examined 15 patients who had suffered acute traumatic injuries to the spinal cord as well as 18 healthy study participants after 2, 6, 12, and 24 months. In the brain as well as spinal cord, they determined the anatomical extent of neurodegeneration, the loss of myelin (the insulating layer surrounding nerve cells), as well as the accumulation of iron in the nerve tissue as a result of degeneration and inflammation.

It then emerged that there was a direct link between the recovery levels of patients after two years and the extent of neurodegenerative change within the first six months after injury. “The smaller the overall loss of nerve tissue across the neuroaxis at the beginning, the better the patients’ long-term clinical recovery,” summarizes Patrick Freund.

Predicting long-term recovery by measuring early changes

What the researchers found surprising was the fact that the recovery was steepest within the first six months but neurodegenerative changes greatest within the same time period with no signs of deceleration over two years in the spinal cord and brain. This indicates a fierce competition between compensatory and neurodegenerative changes early after injury. The battle seems to be lost in favor of neurodegeneration over time.

Nevertheless, the magnitude of early microstructural changes is predictive of the long term recovery of patients suffering from a spinal cord injury. Crucially, non-invasive, high-resolution neuroimaging provides a mean to predict recovery trajectories and distinguish between neurodegeneration caused by the spinal cord injury itself and beneficial changes resulting from therapy.

“We have now a tool to reliably predict recovery and determine the effects of treatments and rehabilitation measures as opposed to spontaneous neurodegeneration in humans” adds neuroimaging specialist Freund. “Clinical studies can thus be carried out more efficiently and cost-effectively in the future.”

Clinical studies into the influence of arm and leg exercises planned

The patients who took part in the study will be examined again after five years using the same method. The scientists want to determine whether the neurodegenerative changes will have ceased by then or whether they will still be ongoing. Patrick Freund and his team are also planning training studies that aim to show whether the high-intensity exercising of arm and leg functions helps to slow down or stop the loss of nerve tissue.

Literature:
Gabriel Ziegler, Patrick Grabher, Alan Thompson, Daniel Altmann, Markus Hupp, John Ashburner, Karl Friston, Nikolaus Weiskopf, Armin Curt, and Patrick Freund. Progressive neurodegeneration following spinal cord injury: implications for clinical trials. Neurology. March 7, 2018. DOI: 10.1212/WNL.0000000000005258

Contact:
PD Patrick Freund, MD, PhD
Spinal Cord Injury Center, Research
Balgrist University Hospital
University of Zurich
Phone +41 44 510 72 11
E-mail: patrick.freund@balgrist.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2018/prediction-spinal-cord-injury.htm...

Kurt Bodenmüller | Universität Zürich

More articles from Life Sciences:

nachricht Happy hour for time-resolved crystallography
17.09.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Too much of a good thing: overactive immune cells trigger inflammation
16.09.2019 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>