Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Re-expression of an embryonic signaling pathway in Melanoma utilizes different receptors

15.09.2014

Metastatic melanoma is a highly aggressive skin cancer whose incidence is on the rise at an alarming rate. Research has revealed that metastatic tumor cells share similar signaling pathways with embryonic stem cells to sustain plasticity and growth. However, major regulators of these pathways are often missing in tumor cells, thus allowing uncontrolled tumor growth and spreading to occur.

During early vertebrate development, Nodal, an embryonic growth factor that governs the growth, pattern and position of tissues, is critical for normal maturation. Nodal plays a significant role in maintaining the pluripotency of embryonic stem cells, meaning the ability of stem cells to differentiate into any of the three germ layers that comprise the body.

The recent discovery of Nodal's re-expression in several aggressive and metastatic cancers has highlighted its critical role in self-renewal and maintenance of the stem cell-like characteristics of tumor cells such as melanoma. However, the signaling pathway receptors utilized by melanoma cells to propagate Nodal's effect remain(s) mostly anecdotal and unexplored.

The laboratory of Mary J.C. Hendrix, PhD made the novel discovery that embryonic stem cells and metastatic melanoma cells share a similar repertoire of receptors known as Type I serine/threonine kinase(s), but diverge in their Type II receptor expression.

Further testing indicated that metastatic melanoma cells and embryonic stem cells use different receptors for Nodal signal transduction. These findings reveal the divergence in Nodal signaling between embryonic stem cells and metastatic melanoma that can impact new therapeutic strategies targeting the re-emergence of embryonic pathways in cancer.

This work is published in the International Journal of Cancer. Mary J.C. Hendrix, PhD points out: "Nodal-expressing tumor cells don't respond favorably to conventional therapies, supporting the premise that a combinatorial approach to targeting Nodal subpopulations within tumors, along with a front-line therapy, would constitute a more rational approach for treating aggressive cancer".

Zhila Khalkhali-Ellis, PhD, senior research scientist in the Hendrix laboratory and the lead author says: "Our discoveries are important for advanced stage aggressive melanoma. Given that limited therapeutic options are currently available for this cancer, we have the opportunity to investigate whether the receptors can be modulated so that the signaling molecule can be neutralized to decrease aggressive behavior." The research was supported by the National Institutes of Health.

###

Zhila Khalkhali-Ellis, PhD is Research Associate Professor of Pediatrics at Northwestern University Feinberg School of Medicine; and a member of the Cancer Biology and Epigenomics Program of Stanley Manne Children's Research Institute, affiliated with Ann & Robert H. Lurie Children's Hospital of Chicago.

Mary J.C. Hendrix, PhD is President & Scientific Director of Manne Research Institute; Children's Research Fund Professor; William G. Swartchild, Jr. Distinguished Research Professor at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

The research team includes members of the Department of Pediatrics at Northwestern University Feinberg School of Medicine, Chicago, Illinois and the Department of Biochemistry at the University of Texas Health Sciences Center, San Antonio, Texas.

Full citation: Khalkhali-Ellis Z, Kirschmann DA, Seftor EA, Gilgur A, Bodenstine TM, Hinck AP, Hendrix MJC. Divergence(s) in Nodal Signaling Between Aggressive Melanoma and Embryonic Stem Cells. International Journal of Cancer. Available online September 9, 2014.

Stanley Manne Children's Research Institute is the research arm of Ann & Robert H. Lurie Children's Hospital of Chicago, the pediatric teaching hospital for Northwestern University Feinberg School of Medicine. The research institute is also one of the interdisciplinary research centers and institutes of the Feinberg School, where principal investigators who are part of the research institute are full-time faculty members.

225 E. Chicago Ave., Box 205
Chicago, IL 60611
http://www.luriechildrensresearch.org
Affiliated with Northwestern University Feinberg School of Medicine

Peggy Murphy | Eurek Alert!

Further reports about: Cancer Health Medicine aggressive melanoma metastatic pathway

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>