Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

(Re)-acquiring the potential to become everything

19.12.2017

A new study in ‘Nature Genetics’ identifies a specific population of pluripotent embryonic stem cells that can reprogram to totipotent-like cells in culture. Moreover, the scientists of Helmholtz Zentrum München and Ludwig-Maximilians-Universität München (LMU) have identified bottlenecks and drivers of this reprogramming.

Cellular plasticity is the ability of a cell to make different cell types. At the early stages of life, the fertilized single-cell coming from the mother’s egg and the father’s sperm is highly plastic - it will give rise to all of the cell types of the body. Cellular plasticity is therefore essential for multicellular organisms like humans to exist.


Fluorescence image of mouse embryonic stem cells (nuclei in blue) including 2 cell-like cells (green) and the novel population of transitioning cells (red).

Source: Helmholtz Zentrum München/IES

The single fertilized cell first divides into two cells (referred to as the 2-cell stage of development). The single cell and the two cells resulting from it, have the highest level of cellular plasticity: They are totipotent, which means they can make a full organism, including the extra-embryonic placental tissue. In contrast, embryonic stem cells are pluripotent which means they can make all the cells of the organism, but typically not the extra-embryonic tissue.

In a culture of embryonic stem (ES) cells, a small population (around 1%) spontaneously turns into cells that are similar to the totipotent cells of the 2-cell stage embryo. These cells are called 2-cell-like cells (2CLCs). In this study, Prof. Dr. Maria Elena Torres-Padilla’s team set out to determine the specific molecular nature of these cells and find out how they come to be.

Torres-Padilla is director of the Institute of Epigenetics and Stem Cells (IES) at Helmholtz Zentrum München and professor of Stem Cell Biology at the LMU. The aim of the team was to gain insights in to the molecular features of totipotency and to work out how changes in cellular plasticity may occur. Their ultimate goal is to understand how these totipotent-like cells ‘behave’ so that they can manipulate them, and generate them in vitro.

The team began by comparing the genes expressed in ES cells to those expressed in 2CLCs. To do this they used ES cells which express a green fluorescent protein when cells start expressing the MERVL gene. “MERVL is a retrotransposon expressed in 2-cell-like cells” explains Diego Rodriguez-Terrones, a PhD student in the Torres-Padilla lab and co-first author of the paper.

“Using this cell line allows us to separate 2-cell-like cells from the ES cells in the culture by collecting the green cells which have entered the 2-cell like state. We then compare the genes expressed in both cell types” he adds. This single cell transcriptome analysis followed by computational analyses enabled the team to identify the gene expression profiles of cells in the process of changing from ES cells to 2CLCs.

They found that during the transition period, cells expressed increasing amounts of a gene encoding the transcription factor Zscan4. They developed their reporter line to also be able to express a red fluorescent protein when Zscan4 is expressed. Live cell imaging confirmed that the majority of cells became red (Zscan4 positive) before becoming green (MERVL positive 2-cell-like cells).

“This observation, combined with the transcriptomic data, told us that cells transition through an intermediate state before becoming 2-cell-like cells” said Maria Elena Torres-Padilla. “Based on these seemingly ordered changes in gene expression, we wanted to find out what might be driving the emergence of the 2-cell-like state. This information would be crucial for furthering our knowledge concerning key regulators of cellular plasticity”.

With the goal of identifying chromatin regulators that can promote cellular reprogramming, the team performed an siRNA screen, in which the expression of over 1000 genes was impaired to see how the appearance of 2CLCs was affected. “The results of this screen were extraordinary, because we identified many novel proteins that regulate the emergence of 2CLCs” said Dr. Xavier Gaume, co-first author of the paper and postdoc in the Torres-Padilla lab.

Of particular interest was the observation that reducing levels of a specific chromatin factor (Ep400/Tip60), results in more 2CLCs. As Ep400/Tip60 is involved in chromatin compaction, this observation identifies an interesting link between chromatin ‘openness’ with increased potency.

Further Information

Background:
Recently, the same Torres-Padilla team published another study in ‘Nature Genetics’ demonstrating that the expression of retrotransposons plays an important role in embryonic development. Since this is also depending on the chromatin ‘openness’, this might support the new observations. The doctoral student Diego Rodriguez-Terrones participates in the Helmholtz Graduate School for Environmental Health (HELENA).

Original Publication:
Rodriguez-Terrones, D. & Gaume, X. et al. (2017): A molecular roadmap for the emergence of early-embryonic-like cells in culture. Nature Genetics, DOI: 10.1038/s41588-017-0016-5

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The research of the Institute of Epigenetics and Stem Cells (IES) is focused on the characterization of early events in mammalian embryos. The scientists are especially interested in the totipotency of cells which is lost during development. Moreover, they want to elucidate who this loss is caused by changes in the nucleus. Their main goal is to understand the underlying molecular mechanisms which might lead to the development of new therapeutic approaches. http://www.helmholtz-muenchen.de/ies

As one of Europe's leading research universities, LMU Munich is committed to the highest international standards of excellence in research and teaching. Building on its 500-year-tradition of scholarship, LMU covers a broad spectrum of disciplines, ranging from the humanities and cultural studies through law, economics and social studies to medicine and the sciences. 15 percent of LMU‘s 50,000 students come from abroad, originating from 130 countries worldwide. The know-how and creativity of LMU's academics form the foundation of the University's outstanding research record. This is also reflected in LMU‘s designation of as a "university of excellence" in the context of the Excellence Initiative, a nationwide competition to promote top-level university research. http://www.en.lmu.de

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49 89 3187 2238 - Fax: +49 89 3187 3324 – E-mail: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Prof. Dr. Maria Elena Torres-Padilla, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Epigenetics and Stem Cells, Marchioninistraße 25, 81377 München – Tel. +49 89 3187 3317 - E-mail: torres-padilla@helmholtz-muenchen.de

Sonja Opitz | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Lateral gene transfer enables chemical protection of beetles against antagonistic fungi
18.07.2018 | Johannes Gutenberg-Universität Mainz

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>