Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rattlesnakes Sound Warning on Biodiversity, Habitat Fragmentation

22.04.2010
Like the canary in the coal mine, the timber rattlesnake may be telling us something about the environment we share.

Cornell University researchers – using cutting-edge tools including fine-scale molecular genetics and microsatellite markers – tracked the rattlesnakes to understand how wildlife habitats are affected by even modest human encroachment.

“We used this species as a model to investigate general processes underlying population-level responses to habitat fragmentation,” said the authors, led by Cornell post-doctoral researcher Rulon Clark, in the paper “Roads, Interrupted Dispersal and Genetic Diversity in Timber Rattlesnakes,” currently available online and to be published in the journal Conservation Biology (August 2010).

Researchers discovered that fragmentation of natural habitats by roads – even smaller, low-traffic highways – has had a significant effect over the past 80 years on genetic structure of timber rattlesnakes in four separate regions of upstate New York. Less genetic diversity means populations become more susceptible to illness or environmental changes that threaten their survival.

“Our study adds to a growing body of literature indicating that even anthropogenic habitat modifications that does not destroy a large amount of habitat can create significant barriers to gene flow,” said researchers.

While the rattlesnakes shorter lifespan and method of travel may help make the impact of roadways relatively quick and dramatic, the new findings reinforce earlier work on other terrestrial animals – from grizzly bears to frogs – and provides a fresh warning about habitat fragmentation that all plans for future human development must consider.

Researchers used fine-scale molecular genetics as well as behavioral and ecological data to look at timber rattlesnakes from 19 different hibernacula – shared wintering quarters – in four regions in New York: the Adirondacks, Sterling Forest, Bear Mountain and Chemung County. In each case they used microsatellite markers to track how populations dispersed from their winter dens, their subsequent reproductive patterns and how roads in these areas altered that gene flow. The roads themselves – all paved roadways built in the late 1920s to early 19030s for motorized traffic – were examined for use and relationship to natural barriers. Tissue samples were examined from more than 500 individual snakes.

“Over all four regions and 19 hibernacula, none of the genetic clusters … spanned either major or minor roads; hibernacula belonging to the same genetic deme were always on the same side of the road,” the paper states. “This fine-scaled analysis, repeated over four geographic regions, underscores the significance of roads as barrier to dispersal and natural population processes for timber rattlesnakes and perhaps other species.”

The research team also included Kelly Zamudio, Cornell University ecology and evolutionary biology professor; William Brown, professor of biology at Skidmore College, Saratoga Springs, N.Y.; and Randy Stechert, an environmental consultant for the New York State Department of Environmental Conservation. Clark is currently an assistant professor at San Diego State University.

The research was funded by the National Science Foundation and the New York State Biodiversity Research Institute.

John Carberry | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>