Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rattlesnake-type poisons used by superbug bacteria to beat our defences

08.09.2008
Colonies of hospital superbugs can make poisons similar to those found in rattlesnake venom to attack our bodies' natural defences, scientists heard today (Monday 8 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

The toxins are manufactured by communities of the hospital superbug Pseudomonas aeruginosa called biofilms, which are up to a thousand times more resistant to antibiotics than free-floating single bacterial cells.

"This is the first time that anyone has successfully proved that the way the bacteria grow - either as a biofilm, or living as individuals - affects the type of proteins they can secrete, and therefore how dangerous they can potentially be to our health," says Dr Martin Welch from the University of Cambridge, UK.

"Acute diseases caused by bacteria can advance at an astonishing rate and tests have associated these types of disease with free-floating bacteria. Such free-floating bugs often secrete tissue-damaging poisons and enzymes to break down our cells, contributing to the way the disease develops, so it is natural to blame them. By contrast, chronic or long-term infections seem to be associated with biofilms, which were thought to be much less aggressive," says Dr Welch.

The research team's findings are very important to the NHS, which spends millions of pounds every year fighting chronic long-term bacterial infections which are incredibly difficult to treat.

"For example, these chronic infections by bacteria are now the major cause of death and serious disability in cystic fibrosis patients - which is the most common lethal inherited disease in the UK and affects about 8,000 people," says Dr Welch.

In cystic fibrosis the gene defect means that people are very susceptible to a particular group of opportunistic bacteria including Pseudomonas aeruginosa, which is one of the three major hospital superbugs. Aggressive antibiotic treatment can usually control the infection in cystic fibrosis sufferers but eventually the strain becomes completely resistant to antibiotics, leading to respiratory failure and death, often while still in their thirties.

"We think that the bacteria in a cystic fibrosis sufferer's lungs are partly living in communities called biofilms, and although medical scientists have investigated their strongly antibiotic-resistant properties, very little research has been done to investigate any active contribution the biofilms might have in causing diseases in the first place," says Dr Welch.

A widely-held view is that biofilms serve as reservoirs of bacteria that do relatively little harm; they just sit there. The main danger is thought to be from 'blooms' of free living cells which occasionally break away from the biofilm and cause periods of poor lung function in the cystic fibrosis patients. "In this scenario, it follows that bacteria in a biofilm will produce fewer disease-causing chemicals than free-living cells of the same type of bacteria, which is a prediction that we can test," says Dr Welch.

"We found that, in contrast to expectation, biofilms do indeed produce harmful chemicals. However, the type of tissue-degrading enzymes and toxins made by the biofilm bacteria differ from those produced by free-floating bugs, which may help them to survive attacks by our immune systems."

In addition, the scientists discovered that the biofilm bacteria can produce a protein which their analysis suggests is similar to one of the active ingredients in rattlesnake venom. In the case of rattlesnake venom the protein causes the host cells to commit suicide and die, which is one reason why rattlesnake bites are so dangerous. The research team is currently studying the protein to see if it functions in the same way.

In addition the scientists have found evidence that the trigger for the bacteria to start producing these extra virulence factors is turned on very shortly after the biofilm begins to form. Once the scientists have fully identified the virulence factors created by the biofilm bacteria, the proteins and enzymes may be targeted to develop drugs for a variety of uses, including the treatment of hospital superbugs, cancer and cystic fibrosis.

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk/meetings/MTGPAGES/Tcd08.cfm

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>