Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare genetic disorder provides clues to development of the pancreas

12.12.2011
A rare genetic disorder has given researchers at the University of Exeter a surprising insight into how the pancreas develops. The finding provides a clue to how it may be possible to 'programme' stem cells – master cells in the body that can develop into specialised cells – to become pancreatic cells.

Pancreatic agenesis is a rare condition in which the body is unable to produce a pancreas. The pancreas plays an essential role in regulating levels of sugar (glucose) in the blood. It does this by the release of the hormone insulin, which is generated and released by cells known as pancreatic beta cells. It also produces enzymes to help digest and absorb food.

Rare mutations in the genes PDX1 and PTF1A have previously been shown to cause pancreatic agenesis, but have only been identified in a handful of families affected by the condition. Until now, the underlying causes of most cases have been unknown.

In a paper published today in Nature Genetics, an international team of researchers led by scientists from the Peninsula College of Medicine and Dentistry at the University of Exeter report a mutation in the gene GATA6 found in fifteen out of twenty-seven individuals with pancreatic agenesis. The study, funded by organisations including the Wellcome Trust, Diabetes UK and the National Institute for Health Research, establishes a key role for GATA6 in the development of pancreatic cells.

The finding was particularly surprising as switching off the GATA6 gene in mouse models appeared to make no difference to the development of the pancreas.

Professor Andrew Hattersley from the Peninsula College of Medicine and Dentistry, said: "This rare genetic condition has provided us with a surprising insight into how the pancreas develops. What is it that programmes cells to become pancreatic beta cells? Our study suggests that GATA6 plays a very important role in this process and we hope this will help the crucial work to try and make beta-cells for patients with type 1 diabetes."

Whilst pancreatic agenesis is an extreme form of pancreatic dysfunction, far more common is diabetes. In type 1 diabetes, which generally develops in childhood, the immune system attacks and destroys pancreatic beta cells and the body is unable to regulate glucose levels, whilst in type 2 diabetes, the beta cells gradually decline until, usually during adulthood, they cease to function.

Professor Sian Ellard, also from Peninsula College of Medicine and Dentistry, added: "This discovery was possible because new sequencing approaches meant we could test all the genetic information in one go and because with the help of doctors throughout the world we were able to study 27 patients with a very rare condition."

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Life Sciences:

nachricht Happy hour for time-resolved crystallography
17.09.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Too much of a good thing: overactive immune cells trigger inflammation
16.09.2019 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>