Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare Earth Elements Excite Protein Probes

28.08.2008
UIC biochemist Lawrence Miller has received a four-year, $1.16 million grant to develop a way to image single biological molecules in living cells by using lanthanide molecules to tag proteins being tracked

Seeing what's going on inside living cells at the molecular level may reveal biological mechanisms and ultimately lead to more effective medicines. While sophisticated microscopes allow scientists to take pictures of a single molecule, capturing images of single molecules in a living cell has been particularly challenging. The molecules must be "tagged" to made visible under the microscope.

Lawrence Miller, assistant professor of chemistry at the University of Illinois at Chicago, hopes to meet that challenge with the help of a four-year, $1.16 million grant from the National Institutes of Health.

"Over the past 10 years, there's been a revolution of sorts in studying protein function in living systems using microscopy to follow dynamic movements and localizations of particular protein molecules," said Miller.

To image a protein, it must be tagged with what is called a reporter -- another protein or even a small organic molecule with special optical properties, such as fluorescence. When fluorescent reporters are illuminated with light of a particular color, they give off a different color light. Fluorescence makes it possible to distinguish reporter-tagged proteins from untagged proteins in the cell.

Common fluorescent reporter molecules make it easy to see multiple copies of a tagged protein in a cell. However, it is difficult to observe a single copy because of other fluorescent molecules in cells. Light from these other fluorescent molecules generates background noise that can obscure the reporter-tagged protein of interest.

But there are ways to distinguish reporter molecules from background fluorescence. All fluorescent molecules have a characteristic lifetime. When a short pulse of light is shined on a molecule, there is a brief delay before fluorescence. The background fluorescence in cells has a lifetime measured in nanoseconds -- billionths of a second.

Miller's lab will build a time-resolved microscope using sophisticated high-shutter-speed cameras to track proteins tagged with a different kind of reporter. The new probes will use lanthanides, the so-called rare-earth elements of the periodic table.

Europium and terbium are particularly promising, Miller said. Their fluorescence is different and more detectable than the commonly used tags.

"They give off multiple colors -- and what's particularly useful, technologically, is that it takes a longer time between when they're excited with a light pulse and the time they fluoresce," he said.

While the whole process happens in a fraction of a second, the lag helps distinguish lanthanide-tagged molecules after the glow of interfering cell fluorescence has faded.

"One purpose of our studies is to demonstrate that we can detect lanthanide reporter-tagged proteins at the single-molecule limit in living cells," said Miller. "That's never been done before."

Lanthanides can also be chemically incorporated into small molecules. Miller's lab aims to synthesize lanthanide reporters that can penetrate cell membranes and bind to proteins of interest with relative ease -- similar to the way drug molecules bind to their targets in cells.

"These tags are like 'smart bombs,'" said Miller. "You add them to cell cultures and they go into cells, find the protein you want to study, and bind with high affinity. It's a straightforward way to selectively label a protein and makes it detectable."

Miller hopes his research will give scientists a better tool to probe protein function within living cells.

Michael Sheetz, professor and chair of biological sciences at Columbia University, will collaborate with Miller by assessing the effects of lanthanide tags and time-resolved microscopy on cell health.

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>