Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare developmental disorder linked to tumor-suppressing protein, Stanford researchers find

04.08.2014

CHARGE, which affects 1 in 10,000 babies, is an acronym whose letters stand for some of the more common symptoms of the condition: coloboma of the eye, heart defects, atresia of the choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness.

Originally, the researchers were examining the tumor-suppressive properties of the protein, called p53, not investigating developmental disorders. But when a mouse model developed a strange set of deficiencies, the researchers followed a trail of clues that led them to link p53 with CHARGE syndrome.

"It was a very big surprise and very intriguing," said Jeanine Van Nostrand, PhD, lead author of a paper describing the research and a former Stanford graduate student, now at The Salk Institute for Biological Studies. "P53 had never before been shown to have a role in CHARGE."

The paper will be published online Aug. 3 in Nature. The senior author is Laura Attardi, PhD, professor of radiation oncology and of genetics.

Cellular quality control regulator

The researchers originally created a mouse model that expressed a mutated form of the protein, known as p53, to investigate the behavior of p53 in suppressing tumors. Mice expressing only the mutated protein survived. But to their surprise, heterozygous mice, or those with one copy of the mutated p53 and one normal copy, developed symptoms of CHARGE and died in utero.

P53 is a cellular quality-control regulator. When it spots an ailing cell, it triggers other proteins to kill the cell or arrest its division. In a developing human or mouse, other proteins switch off p53 so it doesn't inadvertently kill important cells. The mutated form of p53 created by the researchers had a disabled off-switch, but it also couldn't communicate with other proteins to spark the cellular death. Therefore, a mouse containing only the mutated p53 survived to adulthood.

But when mice had one copy of a mutated p53 gene and one normal copy, the resultant proteins formed hybrids. These hybrid p53 proteins couldn't be turned off, but they retained the ability to trigger cellular death. Interestingly, these proteins only affected certain types of cells, causing the symptoms of CHARGE. The results suggest that p53 may play a role in other developmental disorders, Attardi said.

"It really reiterates how carefully p53 must be regulated," Attardi said. "It needs to be turned on at the right time and place. If it's not, it can cause damage."

CHARGE linked to gene mutation

The mechanisms of CHARGE syndrome remain a mystery, although it has been linked to a mutation in a gene called CHD7. Attardi's team examined the connection between p53 and CHD7. They discovered that the CHD7 protein can keep p53 turned off.

By linking p53 with CHARGE, this study elucidates molecular pathways that could be used to develop CHARGE therapies, said co-author Donna Martin, MD, PhD, associate professor of pediatrics and of human genetics at the University of Michigan Medical School and an expert on CHARGE.

###

Additional Stanford authors are former graduate students Colleen Brady, PhD, and Thomas Johnson, MD; postdoctoral scholar Heiyoun Jung, PhD; graduate students Daniel Fuentes, Chieh-Yu Lin and Chien-Jung Lin; Margaret Kozak, a former research assistant; Hannes Vogel, MD, professor of pathology and of pediatrics; Jonathan Bernstein, MD, assistant professor of pediatrics; and Joanna Wysocka, PhD, associate professor of chemical and systems biology and of developmental biology.

Other authors of the study are affiliated with Hôpital Necker-Enfants Malades in Paris, Université Paris Descartes, the Indiana University School of Medicine and the University of Michigan Medical School.

The study was supported by the National Science Foundation; the National Cancer Institute (grant 1F31CA167917); the National Institutes of Health (grants R01GM095555, R01DC009410, HL118087, HL121197 and R01CA140875); the American Heart Association; the March of Dimes Foundation; the American Cancer Society; and the Leukemia & Lymphoma Society.

Information about the Stanford's Department of Radiation Oncology and the Department of Genetics, which also supported the study, is available at http://radonc.stanford.edu and http://genetics.stanford.edu.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital Stanford. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Print media contact: Rosanne Spector at (650) 725-5374 (manishma@stanford.edu)

Broadcast media contact: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Rosanne Spector | Eurek Alert!

Further reports about: CHARGE Syndrome CHD7 Cancer Medicine death disorder heart defects p53 proteins symptoms

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>