Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid pair production – Detection of a new reaction path in the atmosphere

29.03.2018

Scientists have now observed a particularly rapid type of pair production in the laboratory: Hydrocarbons double when two peroxyl radicals react with each other. This means that stable products with the carbon skeleton of both peroxyl radicals are formed, which very likely will have a peroxide structure. Proof of this reaction path has now become possible with the aid of state-of-the-art measuring technology. Researchers from the Leibniz Institute for Tropospheric Research (TROPOS) and the Universities of Innsbruck and Helsinki are presenting their findings in the current issue of the journal “Applied Chemistry”.

The new findings will play an important part in improving our understanding of the decomposition pathways of hydrocarbons in the atmosphere. The rapidly formed reaction products are usually very non-volatile and are precursors for the secondary organic aerosol, which is important for the earth's climate.


The special flow apparatus that allows interference-free experiments of gas phase reactions at atmospheric pressure.

Photo: Tilo Arnhold, TROPOS


At the TROPOS in Leipzig, the team succeeded in demonstrating this process in laboratory experiments using a special flow apparatus.

Photo: Tilo Arnhold, TROPOS

Hydrocarbons are regarded as building blocks of life, combining the elements carbon and hydrogen to give rise to millions of different chemical compounds. In addition to methane, these “organic compounds” also include a large number of other gases that play an important role in the atmosphere. Global emissions of these non-methane hydrocarbons from vegetation and human activities are estimated at around 1.3 billion tonnes per year. It is therefore important to know their degradation processes and the products they produce.

Atmospheric decomposition is initiated by oxidising agents such as ozone or OH radicals (the “atmospheric detergent”), resulting almost exclusively in peroxyl radicals as highly reactive intermediates that can continue to react rapidly with nitric oxide (NO) or other peroxyl radicals. So far, it has been assumed that the formation of accretion products from the reaction of two peroxyl radicals is insignificant, which can be traced back to findings from the 60s and 70s.

The new experiments coupled with the necessary kinetic measurements now lead to the conclusion that the formation of the non-volatile reaction products is significant under all atmospheric conditions. "It is fascinating to be able to follow the formation of peroxyl radicals and their reaction products on-line in the mass spectrometer. This gives us a direct insight into the elementary processes during a chemical reaction," reported Dr Torsten Berndt from TROPOS.

At the TROPOS in Leipzig, the team succeeded in demonstrating this process in laboratory experiments using a special flow apparatus that allows interference-free experiments of gas phase reactions at atmospheric pressure. New mass spectrometric techniques developed in Innsbruck and Leipzig were used here for the first time.

In the mass spectrometric analysis, the compound under investigation is ionised and then identified by the mass-to-charge ratio. The gentle ionisation methods used permit the sensitive detection of peroxyl radicals and their reaction products with a detection limit of up to 1 ppqV. With this technique, it is now possible to reliably determine a specific molecule in a mixture of one quadrillion (1015) molecules.

The identification of this new reaction pathway in the atmosphere is of great importance for climate research, as it is another piece of the puzzle in the search for not yet fully understood sources in the formation of the secondary organic aerosol and the subsequent cloud formation.

So far, clouds are still the great unknown in the climate system. Even the latest report of the Intergovernmental Panel on Climate Change (IPCC) sees clouds as the greatest uncertainty factor in the climate scenarios of the future. The new findings could lead to more precise estimations of the climate-related contribution made by vegetation and thus by various forms of land use. Tilo Arnhold

Publication:
Berndt, T., Scholz, W., Mentler, B., Fischer, L., Herrmann, H., Kulmala, M. and Hansel, A. (2018): Accretion Product Formation from Self- and Cross-Reactions of RO2 Radicals in the Atmosphere. Angew. Chem. Int. Ed. 2018, Volume 57, 3820-3824 & Angew. Chem. 2018, 130, 3882-3886
doi:10.1002/anie.201710989
https://dx.doi.org/10.1002/anie.201710989
The study was supported by the Austrian Research Funding Association (FFG, Project Number 846050).

Links:
Important process for cloud formation from gases unravelled
http://www.tropos.de/en/current-issues/press-releases/details/important-process-...

Fúrther information:
Dr Torsten Berndt, Prof Hartmut Herrmann
Leibniz Institute for Tropospheric Research (TROPOS) Tel. +49-341-2717-7032, -7024
http://www.tropos.de/en/institute/about-us/employees/torsten-berndt/
http://www.tropos.de/en/institute/about-us/employees/hartmut-herrmann/
and
Prof. Armin Hansel
Institut for Ion Physics and Applied Physics, University of Innsbruck, Austria
Tel. +43-512-507-6245
https://www.uibk.ac.at/ionen-angewandte-physik/umwelt/mitarbeiter/ah.html.en
or
Tilo Arnhold
TROPOS Public relations
Tel. +49-341-2717-7189
http://www.tropos.de/en/current-issues/press-releases/

The Leibniz Institute for Tropospheric Research (TROPOS) is member of the Leibniz Association, which connects 93 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz Institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services.

The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz institutions collaborate intensively with universities – in the form of “Leibniz ScienceCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad.

They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the importance of the institutions for the country as a whole, they are funded jointly by the Federation and the Länder, employing some 18,700 individuals, including 9,500 researchers. The entire budget of all the institutes is approximately 1.8 billion Euros.
https://www.leibniz-gemeinschaft.de/en

Weitere Informationen:

https://www.tropos.de/en/current-issues/press-releases/details/translate-to-engl...

Tilo Arnhold | Leibniz-Institut für Troposphärenforschung e. V.

More articles from Life Sciences:

nachricht New sensor detects rare metals used in smartphones
24.04.2019 | Penn State

nachricht Controlling instabilities gives closer look at chemistry from hypersonic vehicles
24.04.2019 | University of Illinois College of Engineering

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>