Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid evolution: New findings on its molecular mechanisms

14.08.2019

Evolutionary biologists from Konstanz analyze the role of microRNAs in the evolution of new species

The mechanisms by which new species arise are still not fully understood. What are the evolutionary processes that drive the evolution of new species? Evolutionary biologists traditionally assumed that geographical barriers between animal populations play a decisive role (allopatric speciation): a species is physically separated into two or more isolated populations, thereby preventing gene flow between these groups.


The Midas cichlid fish from the crater lakes of Nicaragua are one of the the best known examples for sympatric speciation. They evolved from a source population into a variety of independent species in less than 22,000 years.

University of Konstanz

The subpopulations adapt to their respective habitats and evolve into independent species with different characteristics. In recent years, however, the evolutionary biologist Professor Axel Meyer from the University of Konstanz has not only been able to show that new species can evolve from a source population within a shared habitat and in the presence of gene flow (sympatric speciation), but that this type of speciation might be much more common than previously thought.

His laboratory is investigating both the ecological and genetic mechanisms that facilitate sympatric speciation. In a recent publication in the scientific journal Molecular Biology and Evolution, Axel Meyer and his colleagues Paolo Franchini, Peiwen Xiong, Carmelo Fruciano, Ralf Schneider, Joost Woltering and Darrin Hulsey identify the decisive role that a kind of genetic switch, microRNAs, play in sympatric speciation.

Rapid evolution of cichlids

The researchers led by Axel Meyer analyze the Midas cichlid fish from Nicaragua's volcanic crater lakes as a model system in their research. Cichlids are known for their ability to adapt to new environments at an exceptionally rapid rate and to form new species.

The new fish species originate from a population found in the large lakes of Nicaragua, but after colonizing several very small and young crater lakes, they adapted to new ecological niches, evolved new characteristics (e.g. a more elongated body or a different jaw) and evolved into a variety of new species in less than 22,000 years.

A further distinctive feature of these Midas cichlids is that they evolved into different species within the same population, sometimes repeatedly, by adapting to different ecological niches within their small crater lakes. The Midas cichlids of Nicaragua are thus one of the best known examples for sympatric speciation.

Within such a short time period new mutations are very unlikely to happen. This made finding a molecular mechanism that can bring about different body shapes, adaptations and thereby distinct ecological niches so difficult and interesting. The evolution of microRNAs and new target sites for them to regulate the expression of genes offers one potential molecular mechanism that can bring about very fast evolutionary change with very little genetic differences between the extremely young species.

microRNA

The biologists from Konstanz carried out genetic analyses of five species of Midas cichlids from the crater lakes Apoyo and Xiloá. Here, they focused in particular on the function of the so-called microRNA – a non-coding ribonucleic acid that has a regulatory effect on gene expression. The researchers found an increased activity of microRNA in young fish one day after they hatched during a phase in which the fish bodies are formed.

They analyzed the interaction between microRNA and gene expression, identifying specific pairs of microRNAs and genes that influence each other. The microRNA suppresses the expression of the target genes and thus has a regulatory effect on them: the more active a particular microRNA is, the more effectively the target gene is suppressed or “switched off”. “Our research results provide strong evidence that extremely quickly evolving microRNA regulation contributes to the rapid sympatric speciation of Midas cichlids," says Paolo Franchini.

Facts:

- Evolutionary biologists from Konstanz investigate the role of microRNA in the rapid sympatric speciation of Midas cichlids – the evolution of new species within the same habitat and in the presence of gene flow.

- Original publication: Paolo Franchini, Peiwen Xiong, Carmelo Fruciano, Ralf F Schneider, Joost M Woltering, C Darrin Hulsey, Axel Meyer, MicroRNA gene regulation in extremely young and parallel adaptive radiations of crater lake cichlid fish, Molecular Biology and Evolution, msz168
Link: https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msz168/5545549

- Genetic analyses of five species of Midas cichlids from the crater lakes Apoyo and Xiloá, which evolved out of a shared source population into new species in far less than 22,000 years.

- Analyses of the interaction between microRNA and genes. Specific pairs of microRNAs and genes that interact with each other were identified. The microRNA suppresses the expression of the target genes.

- This research project was carried out in the context of Professor Axel Meyer’s ERC Advanced Grant “Comparative genomics of parallel evolution in repeated adaptive radiations” (GenAdap 293700). The project was also funded by a German Research Foundation (DFG) grant (FR 3399/1-1).

Note to editors:
You can download pictures here:

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2019/Bilder/Evolution_1.jpg
Caption: The Midas cichlid fish from the crater lakes of Nicaragua are one of the the best known examples for sympatric speciation. They evolved from a source population into a variety of independent species in less than 22,000 years.

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2019/Bilder/Evolution.jpg
Caption: Researchers found an increased activity of microRNA in young fish one day after they hatched.

Wissenschaftliche Ansprechpartner:

Prof. Axel Meyer, Dr. Paolo Franchini
University of Konstanz

Originalpublikation:

Paolo Franchini, Peiwen Xiong, Carmelo Fruciano, Ralf F Schneider, Joost M Woltering, C Darrin Hulsey, Axel Meyer, MicroRNA gene regulation in extremely young and parallel adaptive radiations of crater lake cichlid fish, Molecular Biology and Evolution, msz168
Link: https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msz168/5545549

Julia Wandt | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Residues in fingerprints hold clues to their age
23.01.2020 | American Chemical Society

nachricht Here, there and everywhere: Large and giant viruses abound globally
23.01.2020 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

DYNAFLEX® at e-World 2020

23.01.2020 | Trade Fair News

Thinking fast & slow: New DFKI project aims at making Deep Learning methods more reliable

23.01.2020 | Information Technology

Residues in fingerprints hold clues to their age

23.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>