Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid evolution: New findings on its molecular mechanisms

14.08.2019

Evolutionary biologists from Konstanz analyze the role of microRNAs in the evolution of new species

The mechanisms by which new species arise are still not fully understood. What are the evolutionary processes that drive the evolution of new species? Evolutionary biologists traditionally assumed that geographical barriers between animal populations play a decisive role (allopatric speciation): a species is physically separated into two or more isolated populations, thereby preventing gene flow between these groups.


The Midas cichlid fish from the crater lakes of Nicaragua are one of the the best known examples for sympatric speciation. They evolved from a source population into a variety of independent species in less than 22,000 years.

University of Konstanz

The subpopulations adapt to their respective habitats and evolve into independent species with different characteristics. In recent years, however, the evolutionary biologist Professor Axel Meyer from the University of Konstanz has not only been able to show that new species can evolve from a source population within a shared habitat and in the presence of gene flow (sympatric speciation), but that this type of speciation might be much more common than previously thought.

His laboratory is investigating both the ecological and genetic mechanisms that facilitate sympatric speciation. In a recent publication in the scientific journal Molecular Biology and Evolution, Axel Meyer and his colleagues Paolo Franchini, Peiwen Xiong, Carmelo Fruciano, Ralf Schneider, Joost Woltering and Darrin Hulsey identify the decisive role that a kind of genetic switch, microRNAs, play in sympatric speciation.

Rapid evolution of cichlids

The researchers led by Axel Meyer analyze the Midas cichlid fish from Nicaragua's volcanic crater lakes as a model system in their research. Cichlids are known for their ability to adapt to new environments at an exceptionally rapid rate and to form new species.

The new fish species originate from a population found in the large lakes of Nicaragua, but after colonizing several very small and young crater lakes, they adapted to new ecological niches, evolved new characteristics (e.g. a more elongated body or a different jaw) and evolved into a variety of new species in less than 22,000 years.

A further distinctive feature of these Midas cichlids is that they evolved into different species within the same population, sometimes repeatedly, by adapting to different ecological niches within their small crater lakes. The Midas cichlids of Nicaragua are thus one of the best known examples for sympatric speciation.

Within such a short time period new mutations are very unlikely to happen. This made finding a molecular mechanism that can bring about different body shapes, adaptations and thereby distinct ecological niches so difficult and interesting. The evolution of microRNAs and new target sites for them to regulate the expression of genes offers one potential molecular mechanism that can bring about very fast evolutionary change with very little genetic differences between the extremely young species.

microRNA

The biologists from Konstanz carried out genetic analyses of five species of Midas cichlids from the crater lakes Apoyo and Xiloá. Here, they focused in particular on the function of the so-called microRNA – a non-coding ribonucleic acid that has a regulatory effect on gene expression. The researchers found an increased activity of microRNA in young fish one day after they hatched during a phase in which the fish bodies are formed.

They analyzed the interaction between microRNA and gene expression, identifying specific pairs of microRNAs and genes that influence each other. The microRNA suppresses the expression of the target genes and thus has a regulatory effect on them: the more active a particular microRNA is, the more effectively the target gene is suppressed or “switched off”. “Our research results provide strong evidence that extremely quickly evolving microRNA regulation contributes to the rapid sympatric speciation of Midas cichlids," says Paolo Franchini.

Facts:

- Evolutionary biologists from Konstanz investigate the role of microRNA in the rapid sympatric speciation of Midas cichlids – the evolution of new species within the same habitat and in the presence of gene flow.

- Original publication: Paolo Franchini, Peiwen Xiong, Carmelo Fruciano, Ralf F Schneider, Joost M Woltering, C Darrin Hulsey, Axel Meyer, MicroRNA gene regulation in extremely young and parallel adaptive radiations of crater lake cichlid fish, Molecular Biology and Evolution, msz168
Link: https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msz168/5545549

- Genetic analyses of five species of Midas cichlids from the crater lakes Apoyo and Xiloá, which evolved out of a shared source population into new species in far less than 22,000 years.

- Analyses of the interaction between microRNA and genes. Specific pairs of microRNAs and genes that interact with each other were identified. The microRNA suppresses the expression of the target genes.

- This research project was carried out in the context of Professor Axel Meyer’s ERC Advanced Grant “Comparative genomics of parallel evolution in repeated adaptive radiations” (GenAdap 293700). The project was also funded by a German Research Foundation (DFG) grant (FR 3399/1-1).

Note to editors:
You can download pictures here:

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2019/Bilder/Evolution_1.jpg
Caption: The Midas cichlid fish from the crater lakes of Nicaragua are one of the the best known examples for sympatric speciation. They evolved from a source population into a variety of independent species in less than 22,000 years.

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2019/Bilder/Evolution.jpg
Caption: Researchers found an increased activity of microRNA in young fish one day after they hatched.

Wissenschaftliche Ansprechpartner:

Prof. Axel Meyer, Dr. Paolo Franchini
University of Konstanz

Originalpublikation:

Paolo Franchini, Peiwen Xiong, Carmelo Fruciano, Ralf F Schneider, Joost M Woltering, C Darrin Hulsey, Axel Meyer, MicroRNA gene regulation in extremely young and parallel adaptive radiations of crater lake cichlid fish, Molecular Biology and Evolution, msz168
Link: https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msz168/5545549

Julia Wandt | idw - Informationsdienst Wissenschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

Jena Laser Technology Conference brings together top international researchers

12.08.2019 | Event News

 
Latest News

Climate change 'disrupts' local plant diversity, study reveals

16.08.2019 | Life Sciences

Finnish discovery brings new insight on the functioning of the eye and retinal diseases

16.08.2019 | Life Sciences

A Rescue Plan for the Ocean

16.08.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>