Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid diagnosis of diseases with novel blood test

02.03.2018

Prof. Dr. Jochen Guck, research group leader at the Biotechnology Center of TU Dresden (BIOTEC), together with medical colleagues from the University Hospital Carl Gustav Carus Dresden and partnering institutes from Dresden (Germany), Cambridge (UK), Glasgow (UK), and Stockholm (Sweden) use a technique called “real-time deformability cytometry” to screen thousands of cells in a drop of blood for unusual appearance and deformability in a matter of minutes. This novel blood test promises to speed up the correct diagnosis of many disease conditions including leukaemia, malaria, bacterial or viral infections, which in turn can lead to a faster and more accurate start of therapy.

When you are sick and go to the doctor, it is often not obvious what exactly is wrong — what is causing fever, nausea, shortness of breath or other symptoms. It is important to find this out quickly so that the right action can be taken. One of the first steps is to obtain a blood sample and to count how many of the different blood cells are present in it.


The artistic rendering of the microscopic view into the measurement chip shows the trajectories of many individual blood cells flowing from right to left.

©Daniel Klaue/ZELLMECHANIK DRESDEN GmbH

This is called a complete blood count, and the information it provides has turned out to be surprisingly useful. A large number of certain white blood cells, for example, can show that the body is fighting an infection. But there might be several reasons why the number of white blood cells has increased, so this information alone is often not enough for a specific diagnosis.

There are many hundreds of possible tests that can supplement the results of a complete blood count. These might identify bacteria or measure the concentrations of certain molecules in the blood, for example. But which test will give the important clue that reveals the source of the illness? This can be difficult to predict. Although each test helps to narrow down the final diagnosis they become increasingly expensive and time-consuming to perform, and rapid action is often important when treating a disease.

Can we get more decisive information from the initial blood test by measuring other properties of the blood cells? The research team now show that this is possible using a technique called “real-time deformability cytometry” (RT-DC). This method forces the blood cells in a small drop of blood to flow extremely rapidly through a narrow microfluidic channel while they are imaged by a fast camera.

A computer algorithm can then analyze the size and stiffness of the blood cells in real-time. The research team show that this approach can detect characteristic changes that affect blood cells as a result of malaria, spherocytosis, bacterial and viral infections, and leukemia. Furthermore, many thousands of blood cells can be measured in a few minutes — fast enough to be suitable as a diagnostic test.

„The 36,000x increase in measurement throughput from 100 cells/hour with previous techniques to measure cell stiffness to now 1,000 cells/sec with RT-DC, which we have accomplished in the last few years, was already remarkable. But to now see RT-DC actually being applied to real-world problems and to improve the diagnosis of many diseases, is really gratifying. This is the apex of a research vision I have been following for almost 20 years”, explains Jochen Guck.

These proof-of-concept findings can now be used to develop actual diagnostic tests for a wide range of blood-related diseases. The approach could also be used to test which of several drugs is working to treat a certain medical condition, and to monitor whether the treatment is progressing as planned.

This research was supported by an ERC Starting Investigator Grant “LightTouch”, an Alexander von Humboldt Professorship, the FP7 Marie-Curie Initial Training Network LAPASO, as well as funding from the Saxon Ministry of Science and Art (SMWK) and the European Fund for Regional Development (EFRE). The technology is now being developed into an actual medical device by the TUD spin-off company Zellmechanik Dresden GmbH, supported by the two ERC Proof-of-Concept Grants FastTouch and BASIC.

Publication
“Detection of human disease conditions by single-cell morphorheological phenotyping of blood”
DOI: 10.7554/eLife.29213
Video: https://elifesciences.org/articles/29213#video1

Caption: RT-DC in action. The artistic rendering of the microscopic view into the measurement chip shows the trajectories of many individual blood cells flowing from right to left. When encountering sheath flows from top and bottom, they widen to form a “heart” before entering the narrow measurement channel on the left, where the appearance and deformation of the cells are being analysed.

Media inquiries:
Franziska Clauß, M.A. (Press Officer)
Tel.: +49 (0) 351 458-82065
E-Mail: franziska.clauss@tu-dresden.de

The Biotechnology Center (BIOTEC) was founded in 2000 as a central scientific unit of the TU Dresden with the goal of combining modern approaches in molecular and cell biology with the traditionally strong engineering in Dresden. Since 2016 the BIOTEC is part of the central scientific unit “Center for Molecular and Cellular Bioengineering” (CMCB) of the TU Dresden. The BIOTEC plays a central role in the “Molecular Bioengineering and Regenerative Medicine” profile of the TU Dresden, fostering developments in the new field of Biotechnology/Biomedicine. The BIOTEC focuses on cell biology, biological physics, and bioinformatics. www.tu-dresden.de/biotec

Weitere Informationen:

Website of Prof. Dr. Jochen Guck
http://www.biotec.tu-dresden.de/research/guck.html

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

ETRI exchanged quantum information on daylight in a free-space quantum key distribution

10.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>