Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid decline in bumblebee species caused by climate change, study finds

10.07.2015

In the most comprehensive analysis of climate change impacts on critical pollinators, researchers have found that rapid declines in bumblebee species across North America and Europe have a strong link to climate change. The study was published in Science today. It was conducted by scientists from University of Ottawa and other North American institutions. Scientists from the Helmholtz Centre for Environmental Research (UFZ), as one of the major partners from Europe, were responsible for coordinating basic data collection.

“Pollinators are vital for food security and our economy, and widespread losses of pollinators due to climate change will diminish both,” stated Professor Jeremy Kerr, Department of Biology. “We need to figure out how we can improve the outlook for pollinators at continental scales, but the most important thing we can do is begin to take serious action to reduce the rate of climate change.”


Bumblebee

UFZ

Though previous studies conducted on other species at smaller scales have showen that species expand to the North Pole as climate warms, these new findings show that bumblebee species are not re-locating. Instead, they are losing range from the south, disappearing over huge areas with rapid warming at continental scales.

This is the first cross-continental analysis to study how a large group of pollinator responds to climate change. The study has also discovered a new biological mechanism that explains how species may respond to climate change based on their evolutionary past.

"We’ve lost around 300 km from the ranges of bumblebees in southern Europe and North America. The scale and pace of these losses are unprecedented. We need new strategies to help these species cope with the effects of human-caused climate change, perhaps assisting them to shift into northern areas," urged professor Kerr.

The study used long-term observations across Europe and North America over 110 years with a database of approximately 423,000 georeferenced observations for 67 bumblebee species. The observations tested for latitudinal and thermal limits and movements along elevation gradients. Together with professor Pierre Rasmont from the University of Mons, Belgium, Dr. Oliver Schweiger (UFZ) was responsible for coordinating the collection of approximately 240,000 observations. Tilo Arnhold

Publication:
Jeremy T. Kerr, Alana Pindar, Paul Galpern, Laurence Packer, Simon G. Potts, Stuart M. Roberts, Pierre Rasmont, Oliver Schweiger, Sheila R. Colla, Leif L. Richardson, David L. Wagner, Lawrence F.Gall, Derek S. Sikes, Alberto Pantoja (2015): Climate change impacts on bumblebees converge across continents. Science. 09 July 2015.

The study was funded by the National Sciences and Engineering Research Council of Canada strategic network (CANPOLIN: Canadian Pollination Initiative) and the European Union (FP7, project STEP – Status and Trends of European Pollinators).

Further Informationen:
Dr. Oliver Schweiger
Helmholtz Centre for Environmental Research (UFZ)
http://www.ufz.de/index.php?en=818
and
Prof. Jeremy T. Kerr
Department of Biology, University of Ottawa, Canada
Tel. +1 613-562-5800 ext. 4577
http://science.uottawa.ca/biology/people/kerr-jeremy-t
http://www.macroecology.ca/Welcome.html
or via
Tilo Arnhold, Susanne Hufe (UFZ press office)
Phone: +49 (0)341-235-1635, -1630
http://www.ufz.de/index.php?en=640
and
Kina Leclair
Media Relations Officer, University of Ottawa
Office: +1 613-562-5800 (2529) & Cell: 613-762-2908
http://www.uottawa.ca/media/media-releases.html

Links:
EU Project „CLIMIT - CLimate change impacts on Insects and their MITigation“ (EU FP 6, ERA-Net project BiodivERsA)
http://www.climit-project.net/

EU Project „STEP - Status and Trends of European Pollinators“ (EU FP 7, Collaborative Project, 2010 – 2015
http://www.step-project.net/

Birds and butterflies are unable to track climate change (Press release, 09 January 2012)
http://www.ufz.de/index.php?en=30100

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotechnologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our research contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ employs more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. http://www.ufz.de/

The Helmholtz Association contributes to solving major and urgent issues in society, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as aviation, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 35,000 employees in 18 research centres and an annual budget of around €3.8 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

Weitere Informationen:

http://www.ufz.de/index.php?en=33996

Susanne Hufe | Helmholtz-Zentrum für Umweltforschung - UFZ

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>