Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radio frequency ID tags on honey bees reveal hive dynamics

23.07.2014

Scientists attached radio-frequency identification (RFID) tags to hundreds of individual honey bees and tracked them for several weeks. The effort yielded two discoveries: Some foraging bees are much busier than others; and if those busy bees disappear, others will take their place.

The findings are reported in the journal Animal Behaviour.


The radio frequency identification tag allowed researchers to determine that some foraging bees are much more active than others.

Credit: Tom Newman, Robinson Bee Laboratory

Tagging the bees revealed that about 20 percent of the foraging bees in a hive brought home more than half of the nectar and pollen gathered to feed the hive.

"We found that some bees are working very, very hard – as we would have expected," said University of Illinois Institute for Genomic Biology director Gene E. Robinson, who led the research. "But then we found some other bees that were not working as hard as the others."

Citizen scientist Paul Tenczar developed the technique for attaching RFID tags to bees and tracking their flight activity with monitors. He and Neuroscience Program graduate student Claudia Lutz measured the foraging activities of bees in several locations, including some in hives in a controlled foraging environment. (Watch a video about this work.)

Vikyath Rao, a graduate student in the laboratory of U. of I. physics professor Nigel Goldenfeld, analyzed the data using a computer model Rao and Goldenfeld developed.

Previous studies, primarily in ants, have found that some social insects work much harder than others in the same colony, Robinson said.

"The assumption has always been that these 'elite' individuals are in some way intrinsically better, that they were born that way," he said.

While it is well known that genetic differences underlie differences in many types of behavior, the new findings show that "sometimes it is important to give individuals a chance in a different situation to truly find out how different they are from each other," Robinson said.

Removal of the elite bees "was associated with an almost five-fold increase in activity level in previously low-activity foragers," the researchers wrote. The change occurred within 24 hours, Tenczar said. This demonstrates that other individuals within the hive also have the capacity to become elites when necessary, Robinson said.

"It is still possible that there truly are elite bees that have some differential abilities to work harder than others, but it's a larger group than first estimated," Robinson said. "Or it could be that all bees are capable of working at this level and there's some kind of colony-level regulation that has some of them working really, really hard, making many trips while others make fewer trips."

Perhaps the less-busy bees function as a kind of reserve force that can kick into high gear if something happens to the super-foragers, Robinson said.

"Our observation is that the colony bounces back to a situation where some bees are very active and some are less active," he said. "Why is that? We don't know. Do all bees have that capability? We still don't know."

###

The National Science Foundation and the Christopher Family Foundation supported this research.

Editor's notes: To reach Gene Robinson, call 217-265-0309; email generobi@illinois.edu.

The paper, "Automated Monitoring Reveals Extreme Inter-Individual Variation and Plasticity in Honey Bee Foraging Activity Levels," is available online or from the U. of I. News Bureau .

Diana Yates | University of Illinois

Further reports about: RFID Radio-frequency identification activity colony honey bees individuals physics

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>