Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Edible Optics" Could Make Food Safer

08.08.2008
Tufts University scientists have shown that it is possible to design biologically active, biodegradable optical devices – made from silk and needing no refrigeration - with applications in medicine, health, the environment and communications. For example, edible optical sensors could detect harmful bacteria in produce, and be consumed right along with the food if it were safe.

Imagine an edible optical sensor that could be placed in produce bags to detect harmful levels of bacteria and consumed right along with the veggies. Or an implantable device that would monitor glucose in your blood for a year, then dissolve.

Scientists at Tufts University's School of Engineering have demonstrated for the first time that it is possible to design such "living" optical elements that could enable an entirely new class of sensors. These sensors would combine sophisticated nanoscale optics with biological readout functions, be biocompatible and biodegradable, and be manufactured and stored at room temperatures without use of toxic chemicals. The Tufts team used fibers from silkworms to develop the platform devices.

Tufts University has filed a number of patent applications on silk-based optics and is actively exploring commercialization opportunities.

... more about:
»Biomedical »Quality »Sensor »biodegradable

"Sophisticated optical devices that are mechanically robust yet fully biodegradable, biocompatible and implantable don't exist today," said principal investigator Fiorenzo Omenetto, associate professor of biomedical engineering and associate professor of physics. "Such systems would greatly expand the use of current optical technologies in areas like human and livestock health, environmental monitoring and food quality."

"For example, at a low cost, we could potentially put a bioactive silk film in every bag of spinach, and it could give the consumer a readout of whether or not E. coli bacteria were in the bag—before the food was consumed," explained David Kaplan, professor and chair of the biomedical engineering department.

The Tufts research was published in a recent paper in Biomacromolecules by Brian D. Lawrence, graduate student in biomedical engineering; Mark Cronin-Golomb, associate professor, biomedical engineering; Irene Georgakoudi, assistant professor, biomedical engineering; Kaplan, and Omenetto.

(http://pubs.acs.org/cgi-bin/article.cgi/bomaf6/2008/9/i04/pdf/bm701235f.pdf).

Optics – the science of light and its interaction with matter – has fascinated generations of scientists such as Sir Isaac Newton. Current optical device platforms are based primarily on glass, semiconductors, plastics or polymers. But the harsh solvents and extreme temperatures needed for manufacture make it impossible to incorporate bioactive sensing components into the devices. Chemical residues and lack of biodegradability also limit environmental and medical applications. Furthermore, biological components typically need to be stored at controlled temperatures to retain their activity.

The possibility of integrating optical readout and biological function in a single biocompatible device unconstrained by these limitations is tantalizing. Silk optics has captured the interest of the Defense Department, which has funded and been instrumental in enabling rapid progress on the topic. The Defense Advanced Research Projects Agency (DARPA) awarded Tufts a research contract in 2007 and is funding Tufts and others on groundbreaking projects that could someday result in biodegradable optical sensing communications technology.

Silk a Natural for Biocompatible Optics
Silk proteins are, literally, a natural for integrating optical and biological functions. They can be processed in water at ordinary temperatures and patterned on the nanoscale to generate a wide range of optical elements, including ultrathin films, thick films, and nanoscale and large-diameter fibers. Silk proteins also offer excellent surface quality and transparency, which are perquisites for high-quality optics. Equally important, they are mechanically robust.

"Silks spun by spiders and silkworms represent the strongest and toughest natural fibers known. They offer many opportunities for functionalization, processing and biological integration when compared to conventional polymers," said Kaplan, an expert on natural biomaterials like silk.

To form the devices, Tufts scientists boiled cocoons of the Bombyx mori silkworm in a water solution and extracted the glue-like sericin proteins. The purified silk protein solution was ultimately poured onto negative molds of ruled and holographic diffraction gratings with spacing as fine as 3600 grooves/mm. The cast silk solution was air dried to create solid fibroin silk films that were cured in water, dried and optically evaluated. A similar process was followed to create lenses, microlens arrays and holograms. Film thicknesses from 10 to 100 µm were characterized for transparency and optical quality.

The variety and quality of the optical elements compared favorably with conventional platforms and outperformed other commonly used biopolymers.

However, the most compelling feature of the platform, according to the Tufts researchers, is that the elements are prepared, processed and optimized in all-aqueous environments and at ambient temperature. This makes possible the inclusion of sensitive biological 'receptors' within the solution that stay active after the solution has hardened into a free-standing silk optical element.

No Refrigeration Needed
The Tufts team embedded three very different biological agents in the silk solution: a protein (hemoglobin), an enzyme (horseradish peroxidase) and an organic pH indicator (phenol red). In the hardened silk optical element, all three agents maintained their activity for long periods when simply stored on a shelf. "We have optical devices embedded with enzymes that are still active after almost a year of storage at room temperature. This is amazing given that the same enzyme becomes inactive if forgotten and left unrefrigerated for a few days," said Omenetto."

Researchers also found that it was possible to alter the propagation of light through the silk optic as a function of the embedded dopant to create an optical signal of the biological activity.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Kim Thurler | Newswise Science News
Further information:
http://www.tufts.edu

Further reports about: Biomedical Quality Sensor biodegradable

More articles from Life Sciences:

nachricht Hopkins researchers ID neurotransmitter that helps cancers progress
26.04.2019 | Johns Hopkins Medicine

nachricht Trigger region found for absence epileptic seizures
25.04.2019 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Researchers discover surprising quantum effect in hard disk drive material

26.04.2019 | Physics and Astronomy

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>