Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quiet Bison Sire More Calves Than Louder Rivals

18.12.2008
During bison mating season, the quietest bulls score the most mates and sire the most offspring while studs with the loudest bellows see the least action, according to a surprising new study by researchers at University of California, Davis, and Point Loma Nazarene University in San Diego. The researchers also found that the volume of a bull’s bellow was not related to its weight or age.

“We were expecting to find that the bigger, stronger guys — the high-quality males — would have the loudest bellows, because they can handle the costs of it,” said Megan Wyman, a graduate student in geography at UC Davis and the lead author of the study. “But instead, we found the opposite. My collaborator in San Diego wanted me to call the paper ‘Speak softly and carry a big stick.’”

The study is the first to examine how the amplitude, or loudness, of a mammal’s vocalizations correlate with reproductive success. It was published in the November issue of the journal Animal Behaviour.

Most studies of vocalized sexual signals among animals have focused on the pitch characteristics, timing and duration of calls. Amplitude has received much less attention, Wyman said, largely because loudness is especially difficult to measure in the field. By the time a grunt or a roar reaches a sound-level meter, its amplitude may have been affected by the animal’s distance from the meter, the direction the animal was facing when it called, wind conditions and a number of other factors.

Bison bellows are loud, low-frequency vocalizations performed by bulls during the rut. They are most commonly used when one male challenges another, typically when the two are within 45 to 90 feet of one another. Yet sometimes a bellow will attract bulls from further away, and this may be one reason that a herd’s dominant bulls keep their voices down, Wyman speculates.

“It could be that bulls provide information about their high quality through other signals — for example, the frequency or the duration of their bellows. So they don’t have to be louder, they just have to be heard,” she said. “If you bellow too loudly, it could bring in too many other bison to check you out.”

The bigger question raised by the study, Wyman said, is why lower-quality males don’t turn down the volume of their bellows to emulate their more successful rivals.

“That’s a lot harder to explain,” she said. “It could be that if you use a quieter volume, other bulls have to approach even closer to check you out, and any time you bring someone that close, there’s a higher risk of attack. And that’s the type of cost that these low-ranking bulls may not be able to bear.”

To learn how bison communicate with one another, Wyman and Michael S. Mooring of Point Loma Nazarene University, and a number of student interns spent two summers monitoring 325 wild bison in Fort Niobrara National Wildlife Refuge in the Sandhills region of north-central Nebraska. The animals were well habituated to the four-wheel drive vehicles the team used to shadow them, and each was easily identifiable by a unique brand it had been given as a calf.

Observing the herd for 14 hours each day during the two-month rut of July and August, the team was able to record each copulation and to detail the tangled web of connections between males and females as bulls lost and gained cows during their intense competitions. To assess where each bull ranked in the herd’s hierarchy of dominance, Wyman tallied outcomes of challenges between rivals, including threats that ended with an animal backing down in the face of combat, as well as full-blown, head-to-head fights. When calves were born the following spring, DNA samples were taken to determine parentage.

For measurements of amplitude, Wyman used a hand-held sound-level meter from the safety of her vehicle. With each reading, she also recorded specific behaviors of the bull, his female and any challenging rivals, as well as noting the factors that could affect the level of the reading such as the bull’s head orientation, its distance from the meter and wind conditions. After selecting for accuracy and quality, she narrowed some 2,000 readings taken from 67 bulls down to 408 readings from 44 bulls.

Her analysis showed that, on average, the least successful bulls — those with the lowest number of copulations and offspring — bellowed at least 50 percent louder than their more successful rivals, corresponding to decibel readings averaging from 109 per bull down to 103. This drop in volume correlated with a rise in the number of times a bull copulated from none to five, and the number of calves it sired from none to nine.

These data are just a portion of the information the researchers collected in the field with the overarching goal of understanding how bison communicate vocally. Yet the results clearly indicate that loudness as a factor of animal communication should receive more attention, Wyman said. “We’ve shown a way of using simple, affordable instruments in the field that can give a good measure of amplitude,” she explained. “I’m hoping that researchers will now start looking at amplitude as something that matters.”

Along with Wyman and Mooring, co-authors of the study are Professor Lynette Hart and Associate Researcher Brenda McCowan with the Department of Population Health and Reproduction in the School of Veterinary Medicine, and Associate Research Geneticist Cecilia Penedo in the Veterinary Genetics Laboratory, all at UC Davis. Funding for the study was provided by the National Science Foundation; the American Society for Mammalogists Grant-in-Aid; Animal Behavior Society Student Research Grant; and the Marjorie and Charles Elliott Fellowship Fund of University of California, Davis.

About UC Davis
For 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has 31,000 students, an annual research budget that exceeds $500 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science — and advanced degrees from five professional schools: Education, Law, Management, Medicine, and Veterinary Medicine. The UC Davis School of Medicine and UC Davis Medical Center are located on the Sacramento campus near downtown.

Liese Greensfelder | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Self-organizing molecules: Nanorings with two sides
24.07.2019 | Universität Duisburg-Essen

nachricht Genome research shows that the body controls the integrity of heritable genomes
24.07.2019 | Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Hidden dynamics detected in neuronal networks

23.07.2019 | Life Sciences

Towards a light driven molecular assembler

23.07.2019 | Life Sciences

A torque on conventional magnetic wisdom

23.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>