Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Questioning conventional understanding of antifreeze proteins

01.08.2018

Scientists describe new phenomenon possibly expanding application

Joint press release by Alfred Wegener Institute and Hokkaido University

Scientists have discovered that an ice-binding protein (fcIBP) from the sea ice microalga does not fit in the conventional classification of ice-binding proteins, suggesting unknown mechanisms behind its antifreeze property. This finding could lead to a broader application of the antifreeze protein in food and medical industries.


Eiskristall unter dem Miskroskop (Photo: Maddalena Bayer-Giraldi)

Organisms living in cold zones produce ice-binding (antifreeze) proteins to prevent themselves from freezing to death. Such proteins have been classified in two groups; the hyperactive type attaches to the hexagonal basal faces of ice crystals to inhibit ice crystal growth and lowers the freezing temperature by up to six degrees C while the moderate type does not attach to the basal faces and lowers the freezing temperature by not more than 1 degree C.

“Many studies on ice-binding proteins have centered on biochemical perspectives, but these proteins have only recently been researched from the viewpoint of crystal growth physics,” says Professor Gen Sazaki of the research team at Hokkaido University.

The researchers used their original chamber developed at Hokkaido University’s Institute of Low Temperature Science, that allowed them to observe in detail the growth of ice crystals in water. The morphology of ice crystals to which fclBP had attached was observed under microscopes and their growth rates were precisely measured.

“To our surprise, we found that fclBP – which is known to be effective in lowering the freezing point by less than 1 degree C – attaches to both basal and prism faces, thus affecting ice crystal growth”, says Dr Maddalena Bayer-Giraldi, first author from the Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research (AWI). When the water temperature was not very low, crystal growth was inhibited and ice crystals became faceted, appearing as hexagonal plates, a phenomenon never seen in ice crystals in pure water. When the water temperature was sufficiently low, the ice crystals took a normal dendrite form. But because fclBP suppressed ice crystal growth on the prism faces, the dendrite branches became narrower, allowing the easier release of heat and thus the faster growth of the tips of the crystal branches.

The study showed that fclBP attaches to both basal and prism faces of ice crystals although it is capable of lowering the freezing point by less than 1 degree C or so, defying the conventional classification of ice-binding proteins. “Ice-binding protein functions cannot be evaluated only by the attachment of the proteins to basal faces or by ice crystal growth inhibition. We need to understand the molecular mechanisms behind their antifreeze properties. Greater understanding of ice-biding proteins could lead to their application in the preservation of food and living organs as well as in cryosurgery,” says Dr Maddalena Bayer-Giraldi.

The team also included Dr. Dmitry A. Vorontsov of Lobachevsky State University of Nizhny Novgorod in Russia and conducted the research at the Institute of Low Temperature Science at Hokkaido University.

Original article:
Bayer-Giraldi M., Sazaki G., et al., Growth suppression of ice crystal basal face in the presence of a moderate ice-binding protein does not confer hyperactivity. Proceedings of National Academy of Science, July 2, 2018. DOI: 10.1073/pnas.1807461115

Funding information:
This study was supported by Deutsche Forschungsgemeinschaft SPP1158 (German Research Association Special Program 1158) Grant BA 3694/2-1, Japan Society for the Promotion of Science (JSPS) Invitational Fellowships PE16746 and L17515, and KAKENHI Grant 16K13672.

Notes for Editors

Your contact persons are:

- Dr Maddalena Bayer-Giraldi, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), tel.: +49(471)4831-1098, e-mail: maddalena.bayer(at)awi.de

- Dr Folke Mehrtens, Dept. of Communications and Media Relations, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), tel: +49(471)4831-2007, e-mail: media(at)awi.de

- Professor Gen Sazaki, Institute of Low Temperature Science, Hokkaido University, e-mail: sazaki(at)lowtem.hokudai.ac.jp (URL: http://www.lowtem.hokudai.ac.jp/ptdice/index_e.html)

- Naoki Namba, Media Officer, Global Relations Office, Institute for International Collaboration, Hokkaido University, tel: +81-11-706-2185, e-mail: pr(at)oia.hokudai.ac.jp

Printable images are available at: https://www.awi.de/nc/en/about-us/service/press/press-release/questioning-conven...

Follow the Alfred Wegener Institute on Twitter (https://twitter.com/AWI_Media) and Facebook (www.facebook.com/AlfredWegenerInstitute).

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de/

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>