Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen’s makes significant cancer breakthrough

09.08.2012
A major breakthrough by scientists at Queen’s could lead to more effective treatments for throat and cervical cancer.
The discovery could see the development of new therapies, which would target the non-cancerous cells surrounding a tumour, as well as treating the tumour itself.

Researchers at Queen’s Centre for Cancer Research and Cell Biology have found that the non-cancerous tissue, or ‘stroma’, surrounding cancers of the throat and cervix, plays an important role in regulating the spread of cancer cells.

The discovery opens the door for the development of new treatments which, by targeting this non-cancerous tissue, could prevent it being invaded by neighbouring cancer cells.

The research, led by Professor Dennis McCance, has just been published in the European Molecular Biology Organization Journal. Professor McCance said: “Cancer spreads as the result of two-way communication between the cancer cells in a tumour and the non-cancerous cells in the surrounding tissue.

“We already know that cancer cells are intrinsically programmed to invade neighbouring healthy tissue. But the cells in the non-cancerous tissue are also programmed to send messages to the cancer cells, actively encouraging them to invade. If these messages – sent from the healthy tissue to the tumour - can be switched-off, then the spread of the cancer will be inhibited.

“What we have discovered is that a particular protein in non-cancerous tissue has the ability to either open or close the communication pathway between the healthy tissue and the tumour. When the Retinoblastoma protein (Rb) in non-cancerous tissue is activated, this leads to a decrease in factors that encourage invasion by cancer cells. And so, the cancer doesn’t spread.”

The Rb protein is found in both cancer and non-cancerous tissue. Its importance in regulating the growth of cancer cells from within tumours is already well-documented, but this is the first time scientists have identified the role of the Rb found in healthy tissue, in encouraging or discouraging the spread of cancer.

The research was conducted using three-dimensional tissue samples, grown in Professor McCance’s lab, to replicate the stroma tissue found around cancers of the throat and cervix.

Speaking about the potential implications for cancer treatment, Professor McCance continued: “Current treatments for cancer focus on targeting the tumour itself, in order to kill the cancer cells before they spread. This discovery opens the door for us to develop new treatments that would target the normal tissue surrounding a tumour, as opposed to the tumour itself. By specifically targeting pathways controlled by the Rb protein, it would be possible to switch-off the messages that encourage cancer cells to invade, and inhibit the spread of the tumour.

“Our research has focussed on cancers of the throat and cervix. But it is possible that Rb or other proteins in the healthy tissue surrounding other types of cancer, may play a similar role in regulating the spread of tumour cells. Therefore, the implications of this discovery could go far beyond throat and cervical cancer, and that is something we plan to investigate further.”

The research was funded by the Wellcome Trust, the Experimental Cancer Medicine Centre and the National Institutes of Health (USA), and was supported by the Northern Ireland Biobank.

The research paper, entitled ‘Inactivation of Rb in stromal fibroblasts promotes epithelial cell invasion’ can be found online at http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2012153a.html

Media inquiries to Anne-Marie Clarke at Queen’s University Communications Office +44 (0)28 9097 5320 comms.officer@qub.ac.uk

Anne-Marie Clarke | EurekAlert!
Further information:
http://www.qub.ac.uk

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>