Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting the Squeeze on Fat Cells

23.11.2010
TAU develops new computer method to measure mechanical stress in fat cells

From fad diets to exercise programs, Americans continue to fight the battle of the bulge. Now they'll have help from recent Tel Aviv University research that has developed a new method to look at how fat cells — which produce the fat in our bodies — respond to mechanical loads.

This might be the key to understanding how to control the amount of fat produced by fat cells, the holy grail of weight loss researchers, says Prof. Amit Gefen of Tel Aviv University's Department of Biomedical Engineering. His research is driven by the theory that fat cells, like bone or muscle cells, are influenced by mechanical loads, defined as the amount of force or deformation placed on a particular area occupied by cells. By recreating the structure of fat cells using a newly-developed computer method, Prof. Gefen and his team of researchers can determine how much mechanical load can be tolerated by fat cells, and at what point the cells will begin to disintegrate.

The research, recently reported in the Journal of Biomechanics, has direct applications in weight loss programs, the treatment of bedsores and the management of chronic diabetes.

Bones in space, fat on the ground

According to Prof. Gefen, applying mechanical loads on tissues can affect many different cells within our bodies. For example, zero gravity affects the bone density of astronauts. When astronauts return home after a prolonged space flight, he explains, they are often confined to a wheelchair for a small period of time. The structures of their bones and muscles, which are determined by the cells that produce these structures, are weakened due to a lack of mechanical loads. This occurs because cells are deprived of "normal" mechanical stimulation, like walking.

Prof. Gefen believes that, much like bone or muscle cells, fat cells are also affected by mechanical loads. His new computer model takes slices of laser confocal microscopy images of cells and reconstructs a whole, virtual version of an individual cell, allowing researchers to evaluate how that cell will respond to different mechanical stimuli. "We use these computer models to see how cells function under mechanical loading, much like simulations in structural engineering are used to test the strength of bridges or machines," he explains.

After assembling their "virtual" fat cells, Prof. Gefen and his group found that fat cells or lipids have a point where mechanical loads can disintegrate them, as well as a point at which they are able to resist disintegration. Prof. Gefen is now trying to determine the specific load magnitudes and frequencies for fat cells, perhaps using ultrasound at a supersonic frequency to vibrate the tissue.

Not all infomercials are light-weight

Those fat-busting "ab vibrators" that you can see on infomercials are on the right track, says Prof. Gefen, but the magnitude of mechanical loads and the frequency of their application need to be scientifically determined. Such information could be crucial to the future of our health, he says, noting that diabetes and obesity rates are rising. "Any treatment that would be effective in fighting obesity would also apply immediately to diabetes," he explains.

The next step for Prof. Gefen and his fellow researchers is to pin down the mathematical equations that allow for the dissolving of lipid droplets, then predict what a fat cell will do under certain levels of force. This will lead to better information on how to use mechanical loads to control the production of fat by fat cells — whether this means applying a certain frequency of ultrasonic vibration, or simply spending more time in the gym.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>