Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue, NASA research provides blueprint for molecular basis of global warming

19.11.2009
A new study indicates that major chemicals most often cited as leading causes of climate change, such as carbon dioxide and methane, are outclassed in their warming potential by compounds receiving less attention.

Purdue University and NASA examined more than a dozen chemicals, most of which are generated by humans, and have developed a blueprint for the underlying molecular machinery of global warming. The results appear in a special edition of the American Chemical Society's Journal of Physical Chemistry A, released Nov. 12.

The compounds, which contain fluorine atoms, are far more efficient at blocking radiation in the "atmospheric window," said Purdue Professor Joseph Francisco, who helped author the study. The atmospheric window is the frequency in the infrared region through which radiation from Earth is released into space, helping to cool the planet. When that radiation is trapped instead of being released, a "greenhouse effect" results, warming the globe. Most of the chemicals in question are used industrially, he said.

NASA scientist Timothy Lee, lead author of the study with Francisco and NASA postdoctoral fellow Partha Bera, characterized the fluorinated compounds as having the potential to quickly slam the atmospheric window shut, as opposed to gradually easing it shut like carbon dioxide.

In the results, chemicals such as chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur and nitrogen fluorides stood out in their warming potential because of their efficiency to trap radiation in the atmospheric window.

"It's actually rather stark," said Francisco, a Purdue chemistry and earth and atmospheric sciences professor, whose research focuses on the chemistry of molecules in the atmosphere.

An understanding of how the chemicals contribute to climate change on a molecular scale affords the opportunity to create benign alternatives and to test new chemicals for their global warming capability before they go to market, Francisco said.

"Now you have a rational design basis," he said.

The researchers looked at more than a dozen chemicals, often referred to as "greenhouse gases," listed as warming agents by the Intergovernmental Panel on Climate Change, the most prominent international scientific group monitoring global warming. The study employed both results from experimental observations and from computer modeling using supercomputers from Information Technology at Purdue (ITaP), Purdue's central information technology organization, and NASA. The goal was to determine which chemical and physical properties are most important in contributing to global warming.

"Believe it or not, nobody has ever delineated these properties," Lee said.

CFC use has waned with the discovery that the chemicals contribute to the destruction of Earth's ozone layer, which absorbs most of the dangerous ultraviolet radiation from the sun. But HFCs and PFCs are widely used in air conditioning and the manufacturing of electronics, appliances and carpets. Other uses range from application as a blood substitute in transfusions to tracking leaks in natural gas lines.

"Although current concentrations of some of these trace gases have been found to be substantially small compared to carbon dioxide, their concentration is on the rise," the study notes. "With the current rate of increase, they will be important contributors in the future, according to some models."

The fluorine atoms that characterize the chemicals are highly electro-negative and tend to pull electrons to themselves, Francisco said. This shift makes the molecules more efficient at absorbing radiation, which would normally bleed harmlessly into space. As a result, the fluorine-containing compounds are the most effective global warming agents, the study concludes.

The compounds also persist longer than carbon dioxide and other major global warming agents, said Lee, chief of the Space Science and Astrobiology Division at NASA Ames Research Center. The concern is that, even if emitted into the atmosphere in lower quantities, the chemicals might have a powerful cumulative effect over time. Some of these chemicals don't break down for thousands of years.

The research was supported by NASA.

Writer: Greg Kline, 765-494-8167, gkline@purdue.edu
Sources: Joseph Francisco, 765-494-7851, francisc@purdue.edu
Timothy Lee, 650-604-5208, Timothy.J.Lee@nasa.gov
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Greg Kline | EurekAlert!
Further information:
http://www.purdue.edu
http://pubs.acs.org/doi/full/10.1021/jp905097g

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>