Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proving the genetic code's flexibility

01.04.2016

Researchers show deviations in an amino acid's code can occur naturally

Four letters - A, C, G and T - stand in for the four chemical bases that store information in DNA. A sequence of these same four letters, repeating in a particular order, genetically defines an organism. Within the genome sequence are shorter, three-letter codons that represent one of the 20 regularly used amino acids, with three of the possible 64 three-letter codons reserved for stop signals.


Starting from the four innermost letters and working to the outermost ring, this table shows shows which three-letter base sequence or codon encodes which amino acid. In the journal Angewandte Chemie International Ed., researchers from the US Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility, and Yale University have discovered that microorganisms recognize more than one codon for the rare, genetically encoded amino acid selenocysteine.

Credit: Wikimedia Commons

These amino acids are the building blocks of proteins that carry out a myriad of functions. For example, the amino acid alanine can be represented by the three-letter codon GCU and the amino acid cysteine by the three-letter codon UGU. In some organisms, the three-letter codon UGA, which normally signals the end of a protein-coding gene, is hijacked to code for a rare genetically encoded amino acid called selenocysteine.

Published ahead online March 16, 2016 in the journal Angewandte Chemie International Ed., researchers from the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility, and Yale University have discovered that microorganisms recognize more than one codon for selenocysteine. The finding adds credence to recent studies indicating that an organism's genetic vocabulary is not as constrained as had been long held.

The work is a follow-up to two 2014 publications; a Science paper by the JGI group finding that some organisms interpret the three "stop" codons which terminate translation to mean anything but. A synthetic biology experiment of the Yale group published in an Angewandte Chemie International Ed. paper revealed the astonishing fact that almost all codons in Escherichia coli could be replaced by selenocysteine. This posed the question whether the same phenomenon can also occur in nature.

"Access to the tremendous resources at the JGI allowed us to quickly test challenging hypotheses generated from my research projects that have been supported over the long-term by DOE Basic Energy Sicences and the National Institutes of Health," said Dieter Soll, Sterling Professor of Molecular Biophysics and Biochemistry Professor of Chemistry at Yale, the lead author of the paper.

Thus a fruitful collaboration resulted; the combined team scanned trillions of base pairs of public microbial genomes and unassembled metagenome data in the National Center for Biotechnology Information and the DOE JGI's Integrated Microbial Genomes (IMG) data management system to find stop codon reassignments in bacteria and bacteriophages. Delving into genomic data from uncultured microbes afforded researchers the opportunity to learn more about how microbes behave in their natural environments, which in turn provides information on their management of the various biogeochemical cycles that help maintain the Earth.

From approximately 6.4 trillion bases of metagenomic sequence and 25,000 microbial genomes, the team identified several species that recognize the stop codons UAG and UAA, in addition to 10 sense codons, as acceptable variants for the selenocysteine codon UGA.

The findings, the team reported, "opens our minds to the possible existence of other coding schemes... Overall our approach provides new evidence of a limited but unequivocal plasticity of the genetic code whose secrets still lie hidden in the majority of unsequenced organisms."

This finding also illustrates the context-dependency of the genetic code, that accurately "reading" the code (and interpreting DNA sequences) and ultimately "writing" DNA (synthesizing sequences to carry out defined functions in bioenergy or environmental sciences) will require study of the language of DNA past the introductory course level.

###

This work was enabled by resources from the DOE Joint Genome Institute's Community Science Program (CSP). The CSP annual call for letters of intent are due April 7 and is focused on large-scale sequence-based genomic science projects that address questions of relevance to DOE missions in sustainable biofuel production, global carbon cycling, and biogeochemistry. For more information, see: http://bit.ly/CSP-2017. Additional support was provided by grants from the National Institute for General Medical Sciences (GM22854 to D.S.) and from the DOE Office of Science (DE-FG02- 98ER20311 to D.S.; for funding the genetic experiments). The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, was supported under Contract No. DE-AC02-05CH11231.

David Gilbert | EurekAlert!

Further reports about: Angewandte Chemie DNA Energy acid amino amino acid amino acids genetic code genomic

More articles from Life Sciences:

nachricht Insect Antibiotic Provides New Way to Eliminate Bacteria
15.11.2018 | Universität Zürich

nachricht New findings help to better calculate the oceans’ contribution to climate regulation
15.11.2018 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Putting food-safety detection in the hands of consumers

15.11.2018 | Information Technology

Insect Antibiotic Provides New Way to Eliminate Bacteria

15.11.2018 | Life Sciences

New findings help to better calculate the oceans’ contribution to climate regulation

15.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>