Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteomics in Time and Space

07.03.2012
‘Proteomics’ is the large-scale study of proteins, particularly their structures and functions.

The large EU project PROSPECTS is a collaborative research effort of leading European scientists in the Proteomics field. PROSPECTS now presents a number of breakthroughs in a series of articles comprising a "Special Issue" of the top journal of the field: Molecular & Cellular Proteomics.

Coordinated by Matthias Mann, director at the Max Planck Institute of Biochemistry (MPIB) in Martinsried near Munich, Germany, the scientists lay out their contribution to the future of proteomics with a powerful and versatile set of assay systems for characterizing proteome dynamics.

“Proteomics specification in time and space” (PROSPECTS) is a five year collaborative project that commenced early in 2008 and is funded by the Research Directorate of the European Commission under the 7th Research Framework Program. PROSPECTS brings together ten leading research groups from around Europe, as well as Thermo Fisher Scientific, a mass spectrometry instrument manufacturer and chromatography company.

The different groups seek new insights into the cellular function of proteins and their aberration during diseases. “We here present a perspective on how the proteomics field is moving beyond simply identifying proteins,” says Matthias Mann. “It now provides powerful tools for characterizing proteome dynamics and thereby creates a new level of proteomics research.” The "Special Issue" contains a series of 16 original research papers documenting the recent progress in all aspects of proteomic research achieved within PROSPECTS.

Original publications
Mann et al.: Proteomics in Time and Space. MCP, March 7, 2012
http://www.mcponline.org/site/home/special_issues/
Contact
Prof. Dr. Matthias Mann
Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
E-Mail: mmann@biochem.mpg.de
Dr. Anne Katrin Werenskiold
Project Manager
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Phone: +49-89-8578 2601
E-Mail: kwerensk@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de/mann
http://www.biochem.mpg.de/facilities/eu/index.html

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>