Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins that work at the end of DNA could provide cancer insight

30.11.2012
New insights into a protein complex that regulates the very tips of chromosomes could improve methods of screening anti-cancer drugs.

Led by bioengineering professor Sua Myong, the research group’s findings are published in the journal Structure.

Myong’s group focused on understanding the proteins that protect and regulate telomeres, segments of repeating DNA units that cap the ends of chromosomes. Telomeres protect the important gene-coding sections of DNA from loss or damage, the genetic equivalent of aglets – the covering at the tips of shoelaces that keep the ends of the laces from unraveling or fraying.

Telomeres play an important role in cell aging and death, since each time a cell divides, a little bit is lost from the end of the telomere. Thus, cell biologists postulate that telomere length can determine the lifespan of a cell. Cancer cells, however, have a way to get around this limitation: An enzyme called telomerase that adds length to telomeres is highly active in cancer cells. This allows cancer cells to divide in perpetuity, running amok through tissues and systems.

“Cancer researchers want to get a hold of this problem, control this indefinite lengthening of the telomeres,” said Myong, who also is affiliated with the Institute for Genomic Biology at the U. of I. “A lot of the anti-cancer drugs are targeted directly to these telomeres so that they can inhibit telomerase activity. The proteins we study regulate the activity of telomerase.”

Using a technique developed at Illinois that allows researchers to watch single molecules interact in real time, Myong’s group determined how two proteins called POT-1 and TTP-1 bind to the telomere. POT-1 protects the fragile telomere ends from being attacked by other regulatory proteins that might mistake the end for a broken or damaged area of DNA. When POT-1 and TTP-1 work together in a complex, they promote telomerase activity, an interesting target for cancer researchers.

The group found that on its own, POT-1 binds to the folded-up telomere in distinct steps at particular points in the telomere’s DNA sequence, unfolding the telomere in a stepwise manner. However, the POT-1/TTP-1 complex surprised the researchers by binding, then freely sliding back and forth along the telomere end.

“Instead of stepwise binding, what we saw was a mobile protein complex, a dynamic sliding motion,” Myong said. “Somehow it was as if the static binding activity of POT-1 is completely lost – the protein complex just slid back and forth. We were able to reproduce the data and confirm it with many different tail lengths of the telomeric DNA and we know now that the contact between POT-1 and the telomere is somehow altered when the partner protein comes and binds.”

Next, the researchers will add telomerase and see how the sliding activity of the POT-1/TTP-1 complex affects telomerase activity. Myong postulates that the sliding may promote telomerase activity – and thus telomere lengthening – by making the end of the telomere accessible for the telomerase enzyme to bind.

“We are excited about the possibility that this kind of mobility can increase the telomerase extension activity,” Myong said. “It’s somehow engaging the enzyme so that it can stay bound to the DNA longer. So it must involve a direct interaction.”

Ultimately, understanding the POT-1/TTP-1 complex gives drug developers a new target for anti-cancer drugs, and the assay Myong’s group used to monitor the complex could offer a venue for evaluating telomere-targeting drugs.

“We want to extend our a basic science knowledge in telomere biology into causes of cancer and we hope that our assay can be useful for telomere-targeted drug screening,” Myong said.

The American Cancer Society and the Human Frontier Science Research Program supported this work.

Liz Ahlberg | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>