Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins with different evolutionary histories now do the same job

21.06.2018

University of Tübingen researchers discover convergent evolution in mitochondria in fungi and single-celled parasites

Mitochondria are essential organelles of cells with a nucleus – known as eukaryotic cells. These are the cells which make up fungi, plants, and animals including humans. Mitochondria work like tiny power plants, processing the energy produced by the digestion of nutrients into a form the cell can use.


Yet they have a number of other functions – which are the focus of research by the working group headed by Professor Doron Rapaport at the University of Tübingen’s Interfaculty Institute of Biochemistry. Nearly all mitochondrial proteins are encoded in the nucleus and after being produced in the cytosol, must be imported into the mitochondria. Scientists know of a protein complex in the outer mitochondrial membrane of the bakers’ yeast which mediates the integration of newly-made proteins into that membrane.

However, until now it was unknown which proteins did that work in other eukaryotic cells. In a new study, the Tübingen researchers describe how they discovered the corresponding protein complex in a single-celled parasite – thereby revealing a case of convergent evolution. That is when characteristics, molecules or organs of different species are very similar, yet have developed independently in unrelated organisms. The study is now available in the latest edition of eLife.

The Tübingen biochemists compared yeast with trypanosomes – single-celled organisms which occur as parasites in vertebrates and are also known as the pathogenic organisms in sleeping sickness in humans. The researchers swapped the protein complexes Mim1/Mim2 from yeast and pATOM36 in trypanosomes, demonstrating that their functions correspond: “These protein complexes are not similar in their composition – which is of different amino acid building-blocks – nor in their structural arrangement,” Rapaport says.

“Yet pATOM36 can reproduce nearly all the functions which yeast cells need if you take away their Mim1/2.” Working with a group headed by Professor André Schneider at the University of Bern, the scientists showed that the exchange worked the other way as well: If trypanosomes don’t have their pATOM36, the Mim1/Mim2 complex is able to replace it. The results also indicate that no other proteins are involved in this transport complex in the outer mitochondrial membrane.

“Mim and pATOM36 are the products of a convergent evolution. They arose only after the ancestors of fungus and trypanosomes had diverged into different evolutionary lines,” Rapaport explains. Now the path is open for further comparative studies to uncover the common basic structures and the function of the two protein complexes, which have evolved via different routes but arrived at the same result. The next major challenge is to identify the protein complex, which fulfills this function in higher organisms – above all in humans.

Publication:
Daniela Vitali, Sandro Käser, Antonia Kolb, Kai S Dimmer, Andre Schneider, Doron Rapaport: Independent evolution of functionally exchangeable mitochondrial outer membrane import complexes. eLife, 2018;7:e34488. DOI: https://doi.org/10.7554/eLife.34488

Insight article about the new research results: https://elifesciences.org/articles/38209

Contact:
Professor Dr. Doron Rapaport
University of Tübingen
Interfaculty Institute of Biochemistry
Phone +49 7071 29-74184
doron.rapaport[at]uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-tuebingen.de/

More articles from Life Sciences:

nachricht Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection
31.03.2020 | Forschungsverbund Berlin

nachricht A 'cardiac patch with bioink' developed to repair heart
31.03.2020 | Pohang University of Science & Technology (POSTECH)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection

31.03.2020 | Life Sciences

A 'cardiac patch with bioink' developed to repair heart

31.03.2020 | Life Sciences

Artificial intelligence can speed up the detection of stroke

31.03.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>