Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

So many proteins, so much promise

31.10.2011
New top-down strategy of identifying proteins could lead to early detection of disease

The human genome has been mapped. Now, it's on to proteins, a much more daunting task. There are 20,300 genes, but there are millions of distinct protein molecules in our bodies. Many of these hold keys to understanding disease and targeting treatment.

A team led by Northwestern University chemical biologist Neil Kelleher has developed a new "top-down" method that can separate and identify thousands of protein molecules quickly. Many have been skeptical that such an approach, where each protein is analyzed intact instead of in smaller parts, could be done on such a large scale.

The promise of a top-down strategy is that the molecular data scientists do collect will be more closely linked to disease.

"Accurate identification of proteins could lead to the identification of biomarkers and early detection of disease as well as the ability to track the outcome of treatment," Kelleher said. "We are dramatically changing the strategy for understanding protein molecules at the most basic level. This is necessary for the Human Proteome Project -- the mapping of all healthy human proteins in tissues and organs -- to really take off."

Kelleher is the Walter and Mary E. Glass Professor of Molecular Biosciences and professor of chemistry in the Weinberg College of Arts and Sciences. He also is director of the Proteomics Center of Excellence and a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Kelleher says his approach is conceptually simple. "We take proteins -- those swimming around in cells -- and we measure them," he said. "We weigh proteins precisely and identify them directly. The way everyone else is doing it is by digesting the proteins, cutting them up into smaller bits called peptides, and putting them back together again. I call it the Humpty Dumpty problem."

The new strategy, Kelleher says, solves the "protein isoform problem" of the "bottom-up" approach where the smaller peptides often do not map cleanly to single human genes. The study will be published Oct. 30 by the journal Nature.

The top-down method can accurately identify which gene produced which protein. The bottom-up method is only 60 to 90 percent accurate in identifying proteins precisely.

"We need to define all the protein molecules in the human body," Kelleher said. "First, we need a map of healthy protein forms, which will become a highly valuable reference list for understanding damaged and diseased forms of proteins. Our technology should allow us to get farther down this road faster."

In the first large-scale demonstration of the top-down method, the researchers were able to identify more than 3,000 protein forms created from 1,043 genes from human HeLa cells.

Their goal was to identify which gene each protein comes from -- to provide a one-to-one picture. They were able to produce this accurate map of thousands of proteins in just a few months.

The researchers also can produce the complete atomic composition for each protein. "If a proton is missing, we know about it," Kelleher said.

One gene they studied, the HMGA1 gene associated with premature aging of cells, produces about 20 different protein forms.

Kelleher's team developed a four-dimensional separation system that uses separations and mass spectrometry to measure the charge, mass and weight of each protein as well as how "greasy" a protein is. The software the researchers developed to analyze the data during years of work prior to the study proved critical to the success of the top-down method.

"If you want to know how the proteins in cancer really work and change, top-down mass spectrometry is getting to the point where it can be part of the discussion," Kelleher said.

"Analyzing the entire set of proteins expressed in a cell presents a continuing and significant technical challenge to the field of proteomics," said Charles Edmonds, who oversees proteomics grants at the National Institute of General Medical Sciences of the National Institutes of Health. "By combining multiple fractionation technologies with mass spectrometry, Dr. Kelleher and colleagues have demonstrated more than an order of magnitude improvement in proteome coverage. This is a great start."

The title of the paper is "Mapping Intact Protein Isoforms in Discovery Mode Using Top-Down Proteomics." In addition to Kelleher, 17 other co-authors contributed to the study.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>