Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins in Focus

15.12.2011
Adjustable protein microlenses made by femtosecond laser direct writing

Whether it’s right under our nose or far away, when we observe an object we see it—provided we have healthy eyes and normal vision or suitable glasses—in focus. For this to work, muscles deform the lenses of our eyes and adjust them to a suitable focal distance.

For miniaturized technical devices, microscale lenses with a similar adaptable focus could be an advantage. In the journal Angewandte Chemie, Hong-Bo Sun and a team from Jilin University (China) have described a new approach to the production of adjustable microlenses made from protein gels.

Proteins are potentially useful as “building materials” for microcomponents because they are readily available, inexpensive, and biocompatible. They can also change their properties in response to external stimuli, which makes them an interesting material for use in adjustable microlenses. However, lenses must be extremely precise in order to meet optical requirements—something difficult to achieve with proteins. In addition, they must be fast, simple, and inexpensive to produce.

The Chinese researchers have now met this challenge: They used a laser to “write” the desired micrometer-sized lens shape out of a solution of bovine serum albumin, a protein. Methylene blue acts as a photosensitizer, which captures the light energy like an antenna and triggers a crosslinking reaction of the protein molecules. Driven by a computer, the laser cuts out the desired three-dimensional form voxel by voxel. A voxel is a three-dimensional pixel, a tiny segment of volume. The irradiation used is in femtosecond pulses, which lasts on the order of 10-13 seconds. The crosslinking reaction only takes place in the locations that are irradiated. After the reaction, the protein molecules that have not reacted can simply be rinsed away. What stays behind is a cross-linked, aqueous protein gel in the shapes of micrometer-sized lenses.

Direct writing with lasers usually results in structures that have too rough a surface for optical applications. By optimizing the duration of the laser pulse, the pulse intensity, and the protein concentration, Sun and his team obtained lenses with outstanding optical properties.

The special trick in this case is that the amount of liquid absorbed by the protein gel depends on the pH value of the solution. Increasing the pH causes the lens to swell. If the increase in thickness is limited by a glass surface, the lens primarily grows in width and becomes flatter. If the pH value is reduced, the gel shrinks and the lens is more curved. Because the radius of curvature determines the focal length of the lens, this method can be used to focus the microlenses.

Because the protein lenses are biocompatible, they may be used in optical analytical systems for medical diagnostics or lab-on-a-chip technology.

About the Author
Dr Hong-Bo Sun is a Changjiang Professor at Jilin University, China. His main specialty is laser micronanofabrication, by which various micro-optical, microelectronic, micromechnical, microfludic, and biomimetic structures and devices have been designed and fabricated in his group.
Author: Hong-Bo Sun, Jilin University, Changchun (China), http://www.lasun-jlu.cn/people.php
Title: Dynamically Tunable Protein Microlenses
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201105925

Hong-Bo Sun | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>