Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein ‘jailbreak’ helps cancer cells live

29.03.2012
Researchers at Brown University and Hasbro Children’s Hospital have traced the molecular interactions that allow the protein survivin to escape the nucleus of a breast cancer cell and prolong the cell’s life. The study may help in the development of better therapies and prognostics.

f the fight against breast cancer were a criminal investigation, then the proteins survivin, HDAC6, CBP, and CRM1 would be among the shadier figures. In that vein, a study to be published in the March 30 Journal of Biological Chemistry is the police report that reveals a key moment for keeping cancer cells alive: survivin’s jailbreak from the nucleus, aided and abetted by the other proteins. The research highlights that a protein’s location in a cell affects its impact on disease, and offers clear new leads for the investigation.

All four proteins were already under suspicion. Researchers, for example, have already tried to assess what levels of HDAC6 in patients with estrogen-receptor positive breast cancer may mean for their prognosis. The results have been inconclusive. The new research suggests that measuring overall levels may not be enough, said the study’s senior author Dr. Rachel Altura, associate professor of pediatrics in The Warren Alpert Medical School of Brown University and a pediatric oncologist at Hasbro Children’s Hospital.

Altura’s emphasis on location comes from what her research team found as they tracked and tweaked the comings and goings of survivin in cells. Inside the nucleus, survivin is no problem. Outside the nucleus, but within the cell, it can prevent normal cell death, allowing cancer cells to persist.

In previous work, Altura and her collaborators established that under normal circumstances, CBP chemically regulates survivin, a process called acetylation, and keeps it in the nucleus. The question in the new work was how survivin gets out.

In a series of experiments, what they observed was that in human and mouse breast cancer cells, HDAC6 gathers at the boundary between the nucleus and the rest of the cell, becomes activated by CBP, then binds survivin and undoes its acetylation. This deacetylation allows survivin to then be shuttled out of the nucleus by CRM1.

In the classic jailbreak, CBP is a corrupt guard who looks the other way as HDAC6, the shovel, is smuggled in. The final accomplice, CRM1, is the tunnel with a getaway car on the other end.

Working the new leads

Altura said the research suggests a clear strategy — to keep survivin in the nucleus — and two leads to pursue it, both of which she has already begun working on with collaborators in academia and in the pharmaceutical industry.

One idea is to inhibit HDAC6 in an attempt to prevent it from misregulating the acetylation of survivin. While general HDAC inhibitors are in clinical trials, Altura is optimistic that blocking just HDAC6, using specific inhibitors developed by a colleague in Japan, would have fewer complications.

“You always have to worry about all the things you don’t know that you are targeting,” she said. “If we can target HDAC6, we can maybe block survivin from coming out of the nucleus and maintain it in its good state.”

The other strategy is to block CRM1, Altura said, an idea she is pursuing with a pharmaceutical company in breast cancer cells in the lab. She said preliminary experiments look promising in keeping survivin inside the nucleus and making cancer cells more susceptible to dying.

The study’s lead author was Brown graduate student Matthew Riolo. Other authors are Zachary Cooper, Michael Holloway, Yan Cheng, Cesario Bianchi, Evgeny Yakirevich, Li Ma, and Eugene Chin.

The National Institutes of Health’s Center for Research Resources funded the study.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>