Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Identified that Plays Role in Blood Flow

22.09.2008
MU researchers use microscopic technology to get closer to understanding vascular diseases

For years, researchers have known that high blood pressure causes blood vessels to contract and low blood pressure causes blood vessels to relax. Until recently, however, researchers did not have the tools to determine the exact proteins responsible for this phenomenon.

Now, using atomic force microscopy - a microscope with very high resolution - and isolating blood vessels outside the body, University of Missouri researchers have identified a protein that plays an important role in the control of tissue blood flow and vascular resistance. This new knowledge brings researchers one step closer to understanding vascular diseases, such as high blood pressure, diabetes and other vascular problems.

“This study provides new insights that clarify the role of specific proteins and the vascular smooth muscle cells that control the mechanical activity of blood vessels,” said Gerald Meininger, professor and director of MU’s Dalton Cardiovascular Research Center. “We have identified an important receptor that is responsible for the ability of small arteries in the body. This research provides new clues for the cause of vascular diseases, such as high blood pressure and diabetes and may be used in the future as a possible therapeutic target.”

The researchers isolated blood vessels from the body and used atomic force microscopy to apply a controlled force to particular proteins located on the surface of smooth muscle cells from the blood vessel wall. When force was applied to the proteins, the smooth muscle cells reacted, and constricted or contracted depending on the proteins that were targeted. Testing several proteins, researchers were able to pinpoint which proteins played a role in the mechanics of blood vessels.

In 90 to 95 percent of high blood pressure cases the cause is unknown, according to the American Heart Association. Understanding the role of these proteins in controlling blood vessel function will eventually lead researchers to better answers for treating and preventing vascular disease, Meininger said.

The study “Extracellular matrix-specific focal adhesions in vascular smooth muscle produce mechanically active adhesion sties,” was published in the American Journal of Physiology Cell Physiology. It was co-authored by Meininger; Zhe Sun, assistant research professor in the Dalton Cardiovascular Research Center; Luis Martinez-Lemus, assistant professor in the MU School of Medicine and investigator in the center; and Michael Hill, professor in the school and investigator in the center.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht Study clarifies kinship of important plant group
05.08.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Human cell-based test systems for toxicity studies: Ready-to-use Toxicity Assay (hiPSC)
05.08.2020 | Fraunhofer-Institut für Biomedizinische Technik IBMT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>