Protein highways keep tissues organized

Proteins (in red) are transported along a intracellular highway (microtubules, in green) to the cell periphery. Picture: Sara Wickstroem / Copyright: MPI of Biochemistry<br>

Single cells build up a tissue by communicating with their environment and with other cells, thereby receiving instructions on whether to divide, change shape or migrate.

An interdisciplinary group of researchers from several Max Planck Institutes have now identified a mechanism by which skin cells organize their interior architecture as a response to signals from their surroundings. “Cells react to changes in their environment very rapidly. To do this, cells need to have their signaling machinery at the right place at the right time” says Sara Wickström, a researcher from the Max Planck Institute of Biochemistry.

Cellular behavior is controlled by signaling pathways which deliver information derived from the surrounding tissue and other cells to the nucleus and other parts of the cell. In order to achieve both efficient and tightly regulated signaling, cells organize their proteins into distinct cellular compartments.

This organization is carried out by intracellular highways called microtubules that are specialized in protein transport. Sara Wickström from the MPIB in Martinsried is analyzing how signals from the extracellular environment regulate these intracellular highways to allow the transport of specific proteins to their correct location. Genetic analyses in mouse skin revealed that signaling from integrins, cell surface receptors that mediate the interactions of cells with their environment, regulate the organization of microtubules so that they can efficiently deliver proteins the cell surface. This is particularly important in tissues like skin, where the upper surfaces of the cells facing the outside world require a different composition than the lower surface facing the interior of the organism.

In collaboration with Matthias Mann and the Department of Proteomics and Signal Transduction, the exact proteins involved in the process were identified. In addition, expertise provided by Joachim P. Spatz at the MPI of Metals Research in Stuttgart allowed investigating the role of the cell shape in the regulation of microtubules. “The process of protein transport is very complex, and therefore a wide range of different approaches were needed to analyze it”, says Sara Wickström.

During diseases like cancer, cells escape normal regulatory mechanisms of cell adhesion and growth signaling to become more motile and proliferative. Changes in the levels of adhesion receptors as well as in the overall protein composition and distribution at the cell surface have long been known to take place in tumor cells. “The most interesting finding of our study is that all these processes are interregulated. Therefore understanding the basic mechanisms of the regulation might help to tackle the primary causes of these changes during disease”, says Sara Wickström. A particularly interesting question is why diseases like cancer become more frequent during ageing, during which structural alterations in the tissues also occur. Sara Wickström will move to start her own research group at the Max Planck Institute for Biology of Ageing in Cologne to continue this interesting avenue of research.

Original Publication:
S. A. Wickström, A. Lange, M. W. Hess, J. Polleux, J. P. Spatz, M. Krüger, K. Pfaller, A. Lambacher, W. Bloch, M. Mann, L. A. Huber and R. Fässler: Integrin-linked kinase controls microtubule dynamics required for plasma membrane targeting of caveolae. Developmental Cell, October 19, 2010.
Contact:
Dr. Sara Wickström
Homeostasis and Ageing of the Skin
Max Planck Institute for Biology of Ageing
Gleueler Str. 50 a
50931 Cologne
Germany
E-Mail: wickstroem@age.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. ++49/89-8578-2824
E-Mail: konschak@biochem.mpg.de

Media Contact

Anja Konschak Max-Planck-Institut

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors