Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein controls clumping of platelets during thrombosis and stroke

20.03.2018

A cell protein called TRPM7 presumably plays an important dual role in clumping of platelets during blood clotting. Scientists from the Rudolf Virchow Center and the Hospital of the University of Würzburg have now been able to demonstrate this in a complex study. Their results could help to improve the treatment of thrombosis, heart attacks or strokes.

Thus, mice in which the TRPM7 fulfilled only one of its two functions developed significantly less brain damage after a stroke. The paper was released in the journal "Arteriosclerosis, Thrombosis, and Vascular Biology" and was published by the editors as an editorial.


Mechanism of TRPM7 (figure left) / Mice without TRPM7 (R/R) had considerably less tissue damage in the brain than in control (WT) mice, using an in vivo model of ischemic stroke (figure right)

University of Würzburg


Protein structure of TRPM7 kinase domain

Prof. Thomas Dandekar, University of Würzburg

Platelets seal injuries

Platelets, thrombocytes in technical terms, use the bloodstream to flow through the body. Usually they look like tiny Frisbee slices. However, during an injury their shape changes: dozens of tentacle-like arms grow within minutes. These interlock with the tentacles of adjacent platelets, much like a hook-and-loop fastener. The result is a plug that seals the hole in the vascular wall and is further enhanced by additional coagulation processes.

The activation of the platelets is strictly controlled. Otherwise there would be a danger that they would hook themselves without necessity and clog intact vessels. An important regulator in this process are calcium ions: In the event of an injury, platelets absorb calcium and thus, among other things, initiate their change of shape. In contrast, magnesium ions act as counterparts, preventing the activation of the platelets and thus the formation of clots.

The cell protein TRPM7 seems to be at the interface of these two regulatory processes. "TRPM7 acts on one side as a channel allowing magnesium ions into the cell," explains the head of the study Dr. Attila Brown. "On the other side TRPM7 also works as an enzyme that interferes with the calcium metabolism of platelets. For the first time we were able to show that this enzyme indirectly promotes the uptake of calcium ions and thus the clumping of platelets."

Mice had less impairment

The researchers were able to demonstrate this in mice, in which the TRPM7 had lost its enzymatic function. "The calcium intake into the platelets was thereby reduced in the animals," emphasizes Braun. "As a channel for magnesium ions, however, the TRPM7 was still fully functional." As a result, the rodents hardly formed any larger blood clots, such as those resulting from a thrombosis. After a stroke, they also developed significantly less brain damage.

"The dead regions were 60 percent smaller than normal mice," says Braun. "The neurological consequences of the stroke, such as paralysis, were also considerably weaker."

Until now the physiological role of TRPM7 kinase remained largely unknown. "Our work is a first step towards clarifying this question," says Braun. "More details need to be explored in the next step - including the question of whether the TRPM7 performs a similar dual role in humans as in mice."

If so, these findings may also have a medical impact in the long run because platelets play an important role in the development of strokes, heart attacks and thrombosis. Drugs that specifically inhibit the enzymatic function of TRPM7 might improve the treatment of these serious diseases.

Publication:
Sanjeev K. Gotru, Wenchun Chen, Peter Kraft, Isabelle C. Becker, Karen Wolf, Simon Stritt, Susanna Zierler, Heike M. Hermanns, Deviyani Rao, Anne-Laure Perraud, Carsten Schmitz, René P. Zahedi, Peter J. Noy, Michael G. Tomlinson, Thomas Dandekar, Masayuki Matsushita, Vladimir Chubanov, Thomas Gudermann, Guido Stoll, Bernhard Nieswandt, Attila Braun: TRPM7 Kinase Controls Calcium Responses in Arterial Thrombosis and Stroke in Mice; Arteriosclerosis, Thrombosis, and Vascular Biology, Februar 2018; DOI: 10.1161/ATVBAHA.117.310391

Project Leader:
Dr. Attila Braun does his research at the Rudolf Virchow Center of the University of Würzburg and at the University Hospital of Würzburg, in the Institute for Experimental Biomedicine from Professor Bernhard Nieswandt. The project was conducted within the DFG Collaborative Research Centre 688.

About the Rudolf Virchow Center:
The Rudolf Virchow Center is a central institution of the University of Würzburg. All research groups are working on target proteins, which are essential for cellular function and therefore central to health and disease.

Webpage:
http://www.rudolf-virchow-zentrum.de/en/research/research-groups/nieswandt-group...

Contact:
Dr. Attila Braun (Rudolf Virchow Center & University Hospital of Würzburg, Germany)
Tel. +49 931 3180410, attila.braun@virchow.uni-wuerzburg.de

Dr. Daniela Diefenbacher (Press Office, Rudolf Virchow Center, Germany)
Tel. +49 931 3188631, daniela.diefenbacher@uni-wuerzburg.de

Weitere Informationen:

http://www.rudolf-virchow-zentrum.de/en/news/news/article/protein-steuert-verklu...

Dr. Daniela Diefenbacher | idw - Informationsdienst Wissenschaft

Further reports about: Biomedizin Mice Protein STROKE Vascular Biology brain damage calcium ions ions magnesium ions thrombosis

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>