Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein chaperone takes its job seriously

03.02.2017

Caltech biochemists reveal how a ribosomal protein is protected by its chaperone

For proteins, this would be the equivalent of the red-carpet treatment: each protein belonging to the complex machinery of ribosomes -- components of the cell that produce proteins -- has its own chaperone to guide it to the right place at the right time and protect it from harm.


Structural rendering of a ribosomal protein (yellow and red) bound to its chaperone (blue). By capturing an atomic-resolution snapshot of the pair of proteins interacting with each other, Ferdinand Huber, a graduate student in the lab of André Hoelz revealed that chaperones can protect their ribosomal proteins by tightly packaging them up. The red region illustrates where the dramatic shape alterations occur when the ribosomal protein is released from the chaperone during ribosome assembly.

Credit: Huber and Hoelz/Caltech

In a new Caltech study, researchers are learning more about how ribosome chaperones work, showing that one particular chaperone binds to its protein client in a very specific, tight manner, almost like a glove fitting a hand. The researchers used X-ray crystallography to solve the atomic structure of the ribosomal protein bound to its chaperone.

"Making ribosomes is a bit like baking a cake. The individual ingredients come in protective packaging that specifically fits their size and shape until they are unwrapped and blended into a batter," says André Hoelz, professor of chemistry at Caltech, a Heritage Medical Research Institute (HMRI) Investigator, and Howard Hughes Medical Institute (HHMI) Faculty Scholar." What we have done is figure out how the protective packaging fits one ribosomal protein, and how it comes unwrapped." Hoelz is the principal investigator behind the study published February 2, 2017, in the journal Nature Communications. The finding has potential applications in the development of new cancer drugs designed specifically to disable ribosome assembly.

In all cells, genetic information is stored as DNA and transcribed into mRNAs that code for proteins. Ribosomes translate the mRNAs into amino acids, linking them together into polypeptide chains that fold into proteins. More than a million ribosomes are produced per day in an animal cell.

Building ribosomes is a formidable undertaking for the cell, involving about 80 proteins that make up the ribosome itself, strings of ribosomal RNA, and more than 200 additional proteins that guide and regulate the process. "Ribosome assembly is a dynamic process, where everything happens in a certain order. We are only now beginning to elucidate the many steps involved," says Hoelz.

To make matters more complex, the proteins making up a ribosome are first synthesized outside the nucleus of a cell, in the cytoplasm, before being transported into the nucleus where the initial stages of ribosome assembly take place.

Chaperone proteins help transport ribosomal proteins to the nucleus while also protecting them from being chopped up by a cell's protein shredding machinery. The components that specifically aim this machinery at unprotected ribosomal proteins, recently identified by Raymond Deshaies, professor of biology at Caltech and an HHMI Investigator, ensures that equal numbers of the various ribosomal proteins are available for building the massive structure of a ribosome.

Previously, Hoelz and his team, in collaboration with the laboratory of Ed Hurt at the University of Heidelberg, discovered that a ribosomal protein called L4 is bound by a chaperone called "Assembly chaperone of RpL4," or Acl4. The chaperone ushers L4 through the nucleus, protecting it from harm, and delivers it to a developing ribosome at a precise time and location. In the new study, the team used X-ray crystallography, a process that involves exposing protein crystals to high-energy X-rays, to solve the structure of the bound pair. The technique was performed at Caltech's Molecular Observatory beamline at the Stanford Synchrotron Radiation Lightsource.

"This was not an easy structure to solve," says Ferdinand Huber, a graduate student at Caltech in the Hoelz lab and first author of the new study. "Solving the structure was incredibly exciting because you could see with your eyes, for the very first time, how the chaperone embraces the ribosomal protein to protect it."

Hoelz says that the structure was a surprise because it was not known previously that chaperones hold on to their ribosomal proteins so tightly. He says they want to study other chaperones in the future to see if they function in a similar fashion to tightly guard ribosomal proteins. The results may lead to the development of new drugs for cancer therapy by preventing cancer cells from supplying the large numbers of ribosomes required for tumor growth.

###

The study, called "Molecular Basis for Protection of Ribosomal Protein L4 from Cellular Degradation," was funded by a PhD fellowship of the Boehringer Ingelheim Fonds, a Faculty Scholar Award of the Howard Hughes Medical Research Institute, a Heritage Medical Research Institute Principal Investigatorship, a Kimmel Scholar Award of the Sidney Kimmel Foundation for Cancer Research, a Teacher-Scholar Award of the Camille & Henry Dreyfus Foundation, and Caltech startup funds.

Media Contact

Whitney Clavin
wclavin@caltech.edu
626-395-1856

 @caltech

http://www.caltech.edu 

Whitney Clavin | EurekAlert!

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>