Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein balance key in preventing cancer

28.02.2013
Fox Chase researchers find that two antagonistic proteins help keep leukemia at bay, pointing to new potential treatments

Two proteins that scientists once thought carried out the same functions are actually antagonists of each other, and keeping them in balance is key to preventing diseases such as cancer, according to new findings published in the February 25 issue of Developmental Cell by scientists at Fox Chase Cancer Center. The results suggest that new compounds could fight cancer by targeting the pathways responsible for maintaining the proper balance between the proteins.

"It's our job now to understand how we can intervene therapeutically in this system, so we can restore balance when it's thrown off," says study author David L. Wiest, PhD, professor and deputy chief scientific officer at Fox Chase.

The two proteins—"Rpl22" and "Rpl22-like1", which contribute to the process by which additional cellular proteins are made—are created from two similar genes, leading researchers to previously believe they were performing identical functions in the body. "What we're finding is that is absolutely not true," says Wiest. "Not only are they performing different functions, they are antagonizing each other."

During the study, Wiest and his team knocked out Rpl22 in zebrafish—a common model of human disease. Without Rpl22, the zebrafish don't develop a type of T cells (a blood cell) that helps fight infections. The same developmental defect was observed when they knocked out Rpl22-like1, indicating that both proteins are independently required to enable stem cells to give rise to T cells.

But when the researchers tried to restore T cells in zebrafish that lacked Rpl22 by adding back Rpl22-like1, it didn't work. The reverse was also true—Rpl22 was not enough to restore function after the researchers eliminated Rpl22-like1. These results led Wiest and his team to believe that, although the proteins are both involved in producing stem cells, they do not perform the same function.

To learn more about the proteins' individual functions, the researchers looked at the levels of different proteins involved in stem cell production when either Rpl22 or Rpl22-like1 was absent. Without Rpl22-like1, cells had lower levels of a protein known as Smad1—a critical driver of stem cell development. And when Rpl22 disappeared, levels of Smad1 increased dramatically.

Both proteins can bind directly to the cellular RNA from which Smad1 is produced, suggesting that they maintain balance in stem cell production via their antagonistic effects on Smad1 expression, explains Wiest.

"I like to think of Rpl22 as a brake, and Rpl22-like1 as a gas pedal – in order to drive stem cell production, both have to be employed properly. If one or the other is too high, this upsets the balance of forces that regulate stem cell production, with potentially deadly effects," says Wiest.

Specifically, too much Rpl22 (the "brake"), and stem cell production shuts off, decreasing the number of blood cells and leading to problems such as anemia. Too much Rpl22-like1 (the "gas pedal"), on the other hand, can create an over-production of stem cells, leading to leukemia.

Previous research has found that Rpl22-like1 is often elevated in cancer, including 80% of cases of acute myeloid leukemia (AML). Conversely, researchers have found that in other cancers, the gene that encodes Rpl22 is deleted. "Either one of these events is sufficient to alter the balance in stem cell production in a way that pushes towards cancer," says Wiest.

Co-authors on the study include Yong Zhang, Anne-Cécile E. Duc, Shuyun Rao, Xiao-Li Sun, Alison N. Bilbee, Michele Rhodes, Qin Li, Dietmar J. Kappes, and Jennifer Rhodes of Fox Chase.

Fox Chase Cancer Center, part of Temple University Health System, is one of the leading cancer research and treatment centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase also was among the first institutions to receive the National Cancer Institute's prestigious comprehensive cancer center designation in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are routinely recognized in national rankings, and the Center's nursing program has achieved Magnet status for excellence three consecutive times. Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research and oversees programs in cancer prevention, detection, survivorship, and community outreach. For more information, call 1-888-FOX-CHASE (1-888-369-2427) or visit www.foxchase.org.

Diana Quattrone | EurekAlert!
Further information:
http://www.fccc.edu

Further reports about: Nobel Prize Protein Rpl22-like1 T cells blood cell cellular protein stem cells

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>